MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexd Structured version   Unicode version

Theorem supexd 7461
Description: A supremum is a set. (Contributed by NM, 22-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
supmo.1  |-  ( ph  ->  R  Or  A )
Assertion
Ref Expression
supexd  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  _V )

Proof of Theorem supexd
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 7449 . 2  |-  sup ( B ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }
2 supmo.1 . . . 4  |-  ( ph  ->  R  Or  A )
32supmo 7460 . . 3  |-  ( ph  ->  E* x  e.  A
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) )
4 rmorabex 4426 . . 3  |-  ( E* x  e.  A ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }  e.  _V )
5 uniexg 4709 . . 3  |-  ( { x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  e.  _V  ->  U. {
x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  e.  _V )
63, 4, 53syl 19 . 2  |-  ( ph  ->  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }  e.  _V )
71, 6syl5eqel 2522 1  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    e. wcel 1726   A.wral 2707   E.wrex 2708   E*wrmo 2710   {crab 2711   _Vcvv 2958   U.cuni 4017   class class class wbr 4215    Or wor 4505   supcsup 7448
This theorem is referenced by:  supex  7471  wsucex  25582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rmo 2715  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-po 4506  df-so 4507  df-sup 7449
  Copyright terms: Public domain W3C validator