MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supfil Unicode version

Theorem supfil 17590
Description: The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
supfil  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  { x  e.  ~P A  |  B  C_  x }  e.  ( Fil `  A ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem supfil
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3200 . . . . 5  |-  ( x  =  y  ->  ( B  C_  x  <->  B  C_  y
) )
21elrab 2923 . . . 4  |-  ( y  e.  { x  e. 
~P A  |  B  C_  x }  <->  ( y  e.  ~P A  /\  B  C_  y ) )
3 vex 2791 . . . . . 6  |-  y  e. 
_V
43elpw 3631 . . . . 5  |-  ( y  e.  ~P A  <->  y  C_  A )
54anbi1i 676 . . . 4  |-  ( ( y  e.  ~P A  /\  B  C_  y )  <-> 
( y  C_  A  /\  B  C_  y ) )
62, 5bitri 240 . . 3  |-  ( y  e.  { x  e. 
~P A  |  B  C_  x }  <->  ( y  C_  A  /\  B  C_  y ) )
76a1i 10 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  (
y  e.  { x  e.  ~P A  |  B  C_  x }  <->  ( y  C_  A  /\  B  C_  y ) ) )
8 elex 2796 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
983ad2ant1 976 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  A  e.  _V )
10 simp2 956 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  B  C_  A )
11 sseq2 3200 . . . . 5  |-  ( y  =  A  ->  ( B  C_  y  <->  B  C_  A
) )
1211sbcieg 3023 . . . 4  |-  ( A  e.  _V  ->  ( [. A  /  y ]. B  C_  y  <->  B  C_  A
) )
139, 12syl 15 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  ( [. A  /  y ]. B  C_  y  <->  B  C_  A
) )
1410, 13mpbird 223 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  [. A  /  y ]. B  C_  y )
15 ss0 3485 . . . . 5  |-  ( B 
C_  (/)  ->  B  =  (/) )
1615necon3ai 2486 . . . 4  |-  ( B  =/=  (/)  ->  -.  B  C_  (/) )
17163ad2ant3 978 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  -.  B  C_  (/) )
18 0ex 4150 . . . 4  |-  (/)  e.  _V
19 sseq2 3200 . . . 4  |-  ( y  =  (/)  ->  ( B 
C_  y  <->  B  C_  (/) ) )
2018, 19sbcie 3025 . . 3  |-  ( [. (/)  /  y ]. B  C_  y  <->  B  C_  (/) )
2117, 20sylnibr 296 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  -.  [. (/)  /  y ]. B  C_  y )
22 sstr 3187 . . . . 5  |-  ( ( B  C_  w  /\  w  C_  z )  ->  B  C_  z )
2322expcom 424 . . . 4  |-  ( w 
C_  z  ->  ( B  C_  w  ->  B  C_  z ) )
24 vex 2791 . . . . 5  |-  w  e. 
_V
25 sseq2 3200 . . . . 5  |-  ( y  =  w  ->  ( B  C_  y  <->  B  C_  w
) )
2624, 25sbcie 3025 . . . 4  |-  ( [. w  /  y ]. B  C_  y  <->  B  C_  w )
27 vex 2791 . . . . 5  |-  z  e. 
_V
28 sseq2 3200 . . . . 5  |-  ( y  =  z  ->  ( B  C_  y  <->  B  C_  z
) )
2927, 28sbcie 3025 . . . 4  |-  ( [. z  /  y ]. B  C_  y  <->  B  C_  z )
3023, 26, 293imtr4g 261 . . 3  |-  ( w 
C_  z  ->  ( [. w  /  y ]. B  C_  y  ->  [. z  /  y ]. B  C_  y ) )
31303ad2ant3 978 . 2  |-  ( ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  /\  z  C_  A  /\  w  C_  z )  ->  ( [. w  /  y ]. B  C_  y  ->  [. z  /  y ]. B  C_  y ) )
32 ssin 3391 . . . . . 6  |-  ( ( B  C_  z  /\  B  C_  w )  <->  B  C_  (
z  i^i  w )
)
3332biimpi 186 . . . . 5  |-  ( ( B  C_  z  /\  B  C_  w )  ->  B  C_  ( z  i^i  w ) )
3429, 26, 33syl2anb 465 . . . 4  |-  ( (
[. z  /  y ]. B  C_  y  /\  [. w  /  y ]. B  C_  y )  ->  B  C_  ( z  i^i  w ) )
3527inex1 4155 . . . . 5  |-  ( z  i^i  w )  e. 
_V
36 sseq2 3200 . . . . 5  |-  ( y  =  ( z  i^i  w )  ->  ( B  C_  y  <->  B  C_  (
z  i^i  w )
) )
3735, 36sbcie 3025 . . . 4  |-  ( [. ( z  i^i  w
)  /  y ]. B  C_  y  <->  B  C_  (
z  i^i  w )
)
3834, 37sylibr 203 . . 3  |-  ( (
[. z  /  y ]. B  C_  y  /\  [. w  /  y ]. B  C_  y )  ->  [. ( z  i^i  w
)  /  y ]. B  C_  y )
3938a1i 10 . 2  |-  ( ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  /\  z  C_  A  /\  w  C_  A )  ->  (
( [. z  /  y ]. B  C_  y  /\  [. w  /  y ]. B  C_  y )  ->  [. ( z  i^i  w
)  /  y ]. B  C_  y ) )
407, 9, 14, 21, 31, 39isfild 17553 1  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  =/=  (/) )  ->  { x  e.  ~P A  |  B  C_  x }  e.  ( Fil `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684    =/= wne 2446   {crab 2547   _Vcvv 2788   [.wsbc 2991    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   ` cfv 5255   Filcfil 17540
This theorem is referenced by:  fclscf  17720  flimfnfcls  17723
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-fbas 17520  df-fil 17541
  Copyright terms: Public domain W3C validator