MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supiso Unicode version

Theorem supiso 7239
Description: Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
supiso.2  |-  ( ph  ->  C  C_  A )
supisoex.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
supiso.4  |-  ( ph  ->  R  Or  A )
Assertion
Ref Expression
supiso  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Distinct variable groups:    x, y,
z, A    x, C, y, z    x, F, y, z    x, R, y, z    x, S, y, z    x, B, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem supiso
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supiso.4 . . 3  |-  ( ph  ->  R  Or  A )
2 supiso.1 . . . 4  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
3 isoso 5861 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A 
<->  S  Or  B ) )
42, 3syl 15 . . 3  |-  ( ph  ->  ( R  Or  A  <->  S  Or  B ) )
51, 4mpbid 201 . 2  |-  ( ph  ->  S  Or  B )
6 isof1o 5838 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  F : A -1-1-onto-> B
)
7 f1of 5488 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
82, 6, 73syl 18 . . 3  |-  ( ph  ->  F : A --> B )
9 supisoex.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
101, 9supcl 7225 . . 3  |-  ( ph  ->  sup ( C ,  A ,  R )  e.  A )
11 ffvelrn 5679 . . 3  |-  ( ( F : A --> B  /\  sup ( C ,  A ,  R )  e.  A
)  ->  ( F `  sup ( C ,  A ,  R )
)  e.  B )
128, 10, 11syl2anc 642 . 2  |-  ( ph  ->  ( F `  sup ( C ,  A ,  R ) )  e.  B )
131, 9supub 7226 . . . . . 6  |-  ( ph  ->  ( u  e.  C  ->  -.  sup ( C ,  A ,  R
) R u ) )
1413ralrimiv 2638 . . . . 5  |-  ( ph  ->  A. u  e.  C  -.  sup ( C ,  A ,  R ) R u )
151, 9suplub 7227 . . . . . . 7  |-  ( ph  ->  ( ( u  e.  A  /\  u R sup ( C ,  A ,  R )
)  ->  E. z  e.  C  u R
z ) )
1615exp3a 425 . . . . . 6  |-  ( ph  ->  ( u  e.  A  ->  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R
z ) ) )
1716ralrimiv 2638 . . . . 5  |-  ( ph  ->  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R
z ) )
18 supiso.2 . . . . . . 7  |-  ( ph  ->  C  C_  A )
192, 18supisolem 7237 . . . . . 6  |-  ( (
ph  /\  sup ( C ,  A ,  R )  e.  A
)  ->  ( ( A. u  e.  C  -.  sup ( C ,  A ,  R ) R u  /\  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
2010, 19mpdan 649 . . . . 5  |-  ( ph  ->  ( ( A. u  e.  C  -.  sup ( C ,  A ,  R ) R u  /\  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
2114, 17, 20mpbi2and 887 . . . 4  |-  ( ph  ->  ( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) )
2221simpld 445 . . 3  |-  ( ph  ->  A. w  e.  ( F " C )  -.  ( F `  sup ( C ,  A ,  R ) ) S w )
2322r19.21bi 2654 . 2  |-  ( (
ph  /\  w  e.  ( F " C ) )  ->  -.  ( F `  sup ( C ,  A ,  R
) ) S w )
2421simprd 449 . . . 4  |-  ( ph  ->  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) )
2524r19.21bi 2654 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
w S ( F `
 sup ( C ,  A ,  R
) )  ->  E. v  e.  ( F " C
) w S v ) )
2625impr 602 . 2  |-  ( (
ph  /\  ( w  e.  B  /\  w S ( F `  sup ( C ,  A ,  R ) ) ) )  ->  E. v  e.  ( F " C
) w S v )
275, 12, 23, 26eqsupd 7224 1  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   class class class wbr 4039    Or wor 4329   "cima 4708   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271    Isom wiso 5272   supcsup 7209
This theorem is referenced by:  infmsup  9748
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 6320  df-sup 7210
  Copyright terms: Public domain W3C validator