MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem2pr Unicode version

Theorem suplem2pr 8693
Description: The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem2pr  |-  ( A 
C_  P.  ->  ( ( y  e.  A  ->  -.  U. A  <P  y
)  /\  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
Distinct variable group:    y, z, A

Proof of Theorem suplem2pr
StepHypRef Expression
1 ltrelpr 8638 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
21brel 4753 . . . . 5  |-  ( y 
<P  U. A  ->  (
y  e.  P.  /\  U. A  e.  P. )
)
32simpld 445 . . . 4  |-  ( y 
<P  U. A  ->  y  e.  P. )
4 ralnex 2566 . . . . . . . . 9  |-  ( A. z  e.  A  -.  y  <P  z  <->  -.  E. z  e.  A  y  <P  z )
5 ssel2 3188 . . . . . . . . . . . 12  |-  ( ( A  C_  P.  /\  z  e.  A )  ->  z  e.  P. )
6 ltsopr 8672 . . . . . . . . . . . . . . . 16  |-  <P  Or  P.
7 sotric 4356 . . . . . . . . . . . . . . . 16  |-  ( ( 
<P  Or  P.  /\  (
y  e.  P.  /\  z  e.  P. )
)  ->  ( y  <P  z  <->  -.  ( y  =  z  \/  z  <P  y ) ) )
86, 7mpan 651 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  <P  z  <->  -.  ( y  =  z  \/  z  <P  y
) ) )
98con2bid 319 . . . . . . . . . . . . . 14  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( ( y  =  z  \/  z  <P 
y )  <->  -.  y  <P  z ) )
109ancoms 439 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( ( y  =  z  \/  z  <P 
y )  <->  -.  y  <P  z ) )
11 ltprord 8670 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( z  <P  y  <->  z 
C.  y ) )
1211orbi2d 682 . . . . . . . . . . . . . 14  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( ( y  =  z  \/  z  <P 
y )  <->  ( y  =  z  \/  z  C.  y ) ) )
13 sspss 3288 . . . . . . . . . . . . . . 15  |-  ( z 
C_  y  <->  ( z  C.  y  \/  z  =  y ) )
14 equcom 1665 . . . . . . . . . . . . . . . 16  |-  ( z  =  y  <->  y  =  z )
1514orbi2i 505 . . . . . . . . . . . . . . 15  |-  ( ( z  C.  y  \/  z  =  y )  <-> 
( z  C.  y  \/  y  =  z
) )
16 orcom 376 . . . . . . . . . . . . . . 15  |-  ( ( z  C.  y  \/  y  =  z )  <-> 
( y  =  z  \/  z  C.  y
) )
1713, 15, 163bitri 262 . . . . . . . . . . . . . 14  |-  ( z 
C_  y  <->  ( y  =  z  \/  z  C.  y ) )
1812, 17syl6bbr 254 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( ( y  =  z  \/  z  <P 
y )  <->  z  C_  y ) )
1910, 18bitr3d 246 . . . . . . . . . . . 12  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( -.  y  <P 
z  <->  z  C_  y
) )
205, 19sylan 457 . . . . . . . . . . 11  |-  ( ( ( A  C_  P.  /\  z  e.  A )  /\  y  e.  P. )  ->  ( -.  y  <P  z  <->  z  C_  y
) )
2120an32s 779 . . . . . . . . . 10  |-  ( ( ( A  C_  P.  /\  y  e.  P. )  /\  z  e.  A
)  ->  ( -.  y  <P  z  <->  z  C_  y ) )
2221ralbidva 2572 . . . . . . . . 9  |-  ( ( A  C_  P.  /\  y  e.  P. )  ->  ( A. z  e.  A  -.  y  <P  z  <->  A. z  e.  A  z  C_  y ) )
234, 22syl5bbr 250 . . . . . . . 8  |-  ( ( A  C_  P.  /\  y  e.  P. )  ->  ( -.  E. z  e.  A  y  <P  z  <->  A. z  e.  A  z  C_  y ) )
24 unissb 3873 . . . . . . . 8  |-  ( U. A  C_  y  <->  A. z  e.  A  z  C_  y )
2523, 24syl6bbr 254 . . . . . . 7  |-  ( ( A  C_  P.  /\  y  e.  P. )  ->  ( -.  E. z  e.  A  y  <P  z  <->  U. A  C_  y ) )
26 ssnpss 3292 . . . . . . . 8  |-  ( U. A  C_  y  ->  -.  y  C.  U. A )
27 ltprord 8670 . . . . . . . . . 10  |-  ( ( y  e.  P.  /\  U. A  e.  P. )  ->  ( y  <P  U. A  <->  y 
C.  U. A ) )
2827biimpd 198 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  U. A  e.  P. )  ->  ( y  <P  U. A  ->  y  C.  U. A
) )
292, 28mpcom 32 . . . . . . . 8  |-  ( y 
<P  U. A  ->  y  C.  U. A )
3026, 29nsyl 113 . . . . . . 7  |-  ( U. A  C_  y  ->  -.  y  <P  U. A )
3125, 30syl6bi 219 . . . . . 6  |-  ( ( A  C_  P.  /\  y  e.  P. )  ->  ( -.  E. z  e.  A  y  <P  z  ->  -.  y  <P  U. A ) )
3231con4d 97 . . . . 5  |-  ( ( A  C_  P.  /\  y  e.  P. )  ->  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) )
3332ex 423 . . . 4  |-  ( A 
C_  P.  ->  ( y  e.  P.  ->  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
343, 33syl5 28 . . 3  |-  ( A 
C_  P.  ->  ( y 
<P  U. A  ->  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
3534pm2.43d 44 . 2  |-  ( A 
C_  P.  ->  ( y 
<P  U. A  ->  E. z  e.  A  y  <P  z ) )
36 elssuni 3871 . . . 4  |-  ( y  e.  A  ->  y  C_ 
U. A )
37 ssnpss 3292 . . . 4  |-  ( y 
C_  U. A  ->  -.  U. A  C.  y )
3836, 37syl 15 . . 3  |-  ( y  e.  A  ->  -.  U. A  C.  y )
391brel 4753 . . . 4  |-  ( U. A  <P  y  ->  ( U. A  e.  P.  /\  y  e.  P. )
)
40 ltprord 8670 . . . . 5  |-  ( ( U. A  e.  P.  /\  y  e.  P. )  ->  ( U. A  <P  y  <->  U. A  C.  y ) )
4140biimpd 198 . . . 4  |-  ( ( U. A  e.  P.  /\  y  e.  P. )  ->  ( U. A  <P  y  ->  U. A  C.  y
) )
4239, 41mpcom 32 . . 3  |-  ( U. A  <P  y  ->  U. A  C.  y )
4338, 42nsyl 113 . 2  |-  ( y  e.  A  ->  -.  U. A  <P  y )
4435, 43jctil 523 1  |-  ( A 
C_  P.  ->  ( ( y  e.  A  ->  -.  U. A  <P  y
)  /\  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165    C. wpss 3166   U.cuni 3843   class class class wbr 4039    Or wor 4329   P.cnp 8497    <P cltp 8501
This theorem is referenced by:  supexpr  8694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-mi 8514  df-lti 8515  df-ltpq 8550  df-enq 8551  df-nq 8552  df-ltnq 8558  df-np 8621  df-ltp 8625
  Copyright terms: Public domain W3C validator