MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supminf Unicode version

Theorem supminf 10305
Description: The supremum of a bounded-above set of reals is the negation of the supremum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
supminf  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  ) )
Distinct variable group:    x, A, y, z

Proof of Theorem supminf
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 negn0 10304 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  { z  e.  RR  |  -u z  e.  A }  =/=  (/) )
2 ublbneg 10302 . . . . 5  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
3 ssrab2 3258 . . . . . 6  |-  { z  e.  RR  |  -u z  e.  A }  C_  RR
4 infmsup 9732 . . . . . 6  |-  ( ( { z  e.  RR  |  -u z  e.  A }  C_  RR  /\  {
z  e.  RR  |  -u z  e.  A }  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  ) )
53, 4mp3an1 1264 . . . . 5  |-  ( ( { z  e.  RR  |  -u z  e.  A }  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  ) )
61, 2, 5syl2an 463 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  ) )
763impa 1146 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  ) )
8 negeq 9044 . . . . . . . . . . 11  |-  ( w  =  x  ->  -u w  =  -u x )
98eleq1d 2349 . . . . . . . . . 10  |-  ( w  =  x  ->  ( -u w  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u x  e.  { z  e.  RR  |  -u z  e.  A }
) )
109elrab 2923 . . . . . . . . 9  |-  ( x  e.  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  <->  ( x  e.  RR  /\  -u x  e.  { z  e.  RR  |  -u z  e.  A } ) )
1110simplbi 446 . . . . . . . 8  |-  ( x  e.  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  ->  x  e.  RR )
1211adantl 452 . . . . . . 7  |-  ( ( A  C_  RR  /\  x  e.  { w  e.  RR  |  -u w  e.  {
z  e.  RR  |  -u z  e.  A } } )  ->  x  e.  RR )
13 ssel2 3175 . . . . . . 7  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
149elrab3 2924 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
x  e.  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  <->  -u x  e.  {
z  e.  RR  |  -u z  e.  A }
) )
15 renegcl 9110 . . . . . . . . . 10  |-  ( x  e.  RR  ->  -u x  e.  RR )
16 negeq 9044 . . . . . . . . . . . 12  |-  ( z  =  -u x  ->  -u z  =  -u -u x )
1716eleq1d 2349 . . . . . . . . . . 11  |-  ( z  =  -u x  ->  ( -u z  e.  A  <->  -u -u x  e.  A ) )
1817elrab3 2924 . . . . . . . . . 10  |-  ( -u x  e.  RR  ->  (
-u x  e.  {
z  e.  RR  |  -u z  e.  A }  <->  -u -u x  e.  A
) )
1915, 18syl 15 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( -u x  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u -u x  e.  A
) )
20 recn 8827 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  CC )
2120negnegd 9148 . . . . . . . . . 10  |-  ( x  e.  RR  ->  -u -u x  =  x )
2221eleq1d 2349 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( -u -u x  e.  A  <->  x  e.  A ) )
2314, 19, 223bitrd 270 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x  e.  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  <->  x  e.  A
) )
2423adantl 452 . . . . . . 7  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  (
x  e.  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  <->  x  e.  A
) )
2512, 13, 24eqrdav 2282 . . . . . 6  |-  ( A 
C_  RR  ->  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  =  A
)
2625supeq1d 7199 . . . . 5  |-  ( A 
C_  RR  ->  sup ( { w  e.  RR  |  -u w  e.  {
z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  )  =  sup ( A ,  RR ,  <  ) )
27263ad2ant1 976 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( { w  e.  RR  |  -u w  e.  {
z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  )  =  sup ( A ,  RR ,  <  ) )
2827negeqd 9046 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  -u sup ( { w  e.  RR  |  -u w  e.  {
z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  ) )
297, 28eqtrd 2315 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( A ,  RR ,  <  ) )
30 infmrcl 9733 . . . . . 6  |-  ( ( { z  e.  RR  |  -u z  e.  A }  C_  RR  /\  {
z  e.  RR  |  -u z  e.  A }  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR )
313, 30mp3an1 1264 . . . . 5  |-  ( ( { z  e.  RR  |  -u z  e.  A }  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR )
321, 2, 31syl2an 463 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR )
33323impa 1146 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR )
34 suprcl 9714 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
35 recn 8827 . . . 4  |-  ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  CC )
36 recn 8827 . . . 4  |-  ( sup ( A ,  RR ,  <  )  e.  RR  ->  sup ( A ,  RR ,  <  )  e.  CC )
37 negcon2 9100 . . . 4  |-  ( ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  CC  /\  sup ( A ,  RR ,  <  )  e.  CC )  ->  ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  ) ) )
3835, 36, 37syl2an 463 . . 3  |-  ( ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR  /\  sup ( A ,  RR ,  <  )  e.  RR )  ->  ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  ) ) )
3933, 34, 38syl2anc 642 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  ) ) )
4029, 39mpbid 201 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   (/)c0 3455   class class class wbr 4023   `'ccnv 4688   supcsup 7193   CCcc 8735   RRcr 8736    < clt 8867    <_ cle 8868   -ucneg 9038
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040
  Copyright terms: Public domain W3C validator