MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem1 Unicode version

Theorem supmullem1 9736
Description: Lemma for supmul 9738. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1  |-  C  =  { z  |  E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b ) }
supmul.2  |-  ( ph  <->  ( ( A. x  e.  A  0  <_  x  /\  A. x  e.  B 
0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( B 
C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) ) )
Assertion
Ref Expression
supmullem1  |-  ( ph  ->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) )
Distinct variable groups:    A, b,
v, x, y, w, z    B, b, v, x, y, w, z    x, C, w    ph, b, w, z
Allowed substitution hints:    ph( x, y, v)    C( y, z, v, b)

Proof of Theorem supmullem1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 vex 2804 . . . 4  |-  w  e. 
_V
2 oveq1 5881 . . . . . . . 8  |-  ( v  =  a  ->  (
v  x.  b )  =  ( a  x.  b ) )
32eqeq2d 2307 . . . . . . 7  |-  ( v  =  a  ->  (
z  =  ( v  x.  b )  <->  z  =  ( a  x.  b
) ) )
43rexbidv 2577 . . . . . 6  |-  ( v  =  a  ->  ( E. b  e.  B  z  =  ( v  x.  b )  <->  E. b  e.  B  z  =  ( a  x.  b
) ) )
54cbvrexv 2778 . . . . 5  |-  ( E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b )  <->  E. a  e.  A  E. b  e.  B  z  =  ( a  x.  b
) )
6 eqeq1 2302 . . . . . 6  |-  ( z  =  w  ->  (
z  =  ( a  x.  b )  <->  w  =  ( a  x.  b
) ) )
762rexbidv 2599 . . . . 5  |-  ( z  =  w  ->  ( E. a  e.  A  E. b  e.  B  z  =  ( a  x.  b )  <->  E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) ) )
85, 7syl5bb 248 . . . 4  |-  ( z  =  w  ->  ( E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b )  <->  E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) ) )
9 supmul.1 . . . 4  |-  C  =  { z  |  E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b ) }
101, 8, 9elab2 2930 . . 3  |-  ( w  e.  C  <->  E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) )
11 supmul.2 . . . . . . . . . . 11  |-  ( ph  <->  ( ( A. x  e.  A  0  <_  x  /\  A. x  e.  B 
0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( B 
C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) ) )
1211simp2bi 971 . . . . . . . . . 10  |-  ( ph  ->  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x ) )
1312simp1d 967 . . . . . . . . 9  |-  ( ph  ->  A  C_  RR )
1413sselda 3193 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  RR )
1514adantrr 697 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  -> 
a  e.  RR )
16 suprcl 9730 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
1712, 16syl 15 . . . . . . . 8  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
1817adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  ->  sup ( A ,  RR ,  <  )  e.  RR )
1911simp3bi 972 . . . . . . . . . 10  |-  ( ph  ->  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x ) )
2019simp1d 967 . . . . . . . . 9  |-  ( ph  ->  B  C_  RR )
2120sselda 3193 . . . . . . . 8  |-  ( (
ph  /\  b  e.  B )  ->  b  e.  RR )
2221adantrl 696 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  -> 
b  e.  RR )
23 suprcl 9730 . . . . . . . . 9  |-  ( ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
)  ->  sup ( B ,  RR ,  <  )  e.  RR )
2419, 23syl 15 . . . . . . . 8  |-  ( ph  ->  sup ( B ,  RR ,  <  )  e.  RR )
2524adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  ->  sup ( B ,  RR ,  <  )  e.  RR )
26 simp1l 979 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  A  0  <_  x  /\  A. x  e.  B 
0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( B 
C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  ->  A. x  e.  A  0  <_  x )
2711, 26sylbi 187 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A 
0  <_  x )
28 breq2 4043 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
0  <_  x  <->  0  <_  a ) )
2928rspccv 2894 . . . . . . . . . 10  |-  ( A. x  e.  A  0  <_  x  ->  ( a  e.  A  ->  0  <_ 
a ) )
3027, 29syl 15 . . . . . . . . 9  |-  ( ph  ->  ( a  e.  A  ->  0  <_  a )
)
3130imp 418 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  0  <_  a )
3231adantrr 697 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  -> 
0  <_  a )
33 simp1r 980 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  A  0  <_  x  /\  A. x  e.  B 
0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( B 
C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  ->  A. x  e.  B  0  <_  x )
3411, 33sylbi 187 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  B 
0  <_  x )
35 breq2 4043 . . . . . . . . . . 11  |-  ( x  =  b  ->  (
0  <_  x  <->  0  <_  b ) )
3635rspccv 2894 . . . . . . . . . 10  |-  ( A. x  e.  B  0  <_  x  ->  ( b  e.  B  ->  0  <_ 
b ) )
3734, 36syl 15 . . . . . . . . 9  |-  ( ph  ->  ( b  e.  B  ->  0  <_  b )
)
3837imp 418 . . . . . . . 8  |-  ( (
ph  /\  b  e.  B )  ->  0  <_  b )
3938adantrl 696 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  -> 
0  <_  b )
40 suprub 9731 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  a  e.  A )  ->  a  <_  sup ( A ,  RR ,  <  ) )
4112, 40sylan 457 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  a  <_  sup ( A ,  RR ,  <  ) )
4241adantrr 697 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  -> 
a  <_  sup ( A ,  RR ,  <  ) )
43 suprub 9731 . . . . . . . . 9  |-  ( ( ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x )  /\  b  e.  B )  ->  b  <_  sup ( B ,  RR ,  <  ) )
4419, 43sylan 457 . . . . . . . 8  |-  ( (
ph  /\  b  e.  B )  ->  b  <_  sup ( B ,  RR ,  <  ) )
4544adantrl 696 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  -> 
b  <_  sup ( B ,  RR ,  <  ) )
4615, 18, 22, 25, 32, 39, 42, 45lemul12ad 9715 . . . . . 6  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  -> 
( a  x.  b
)  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) )
4746ex 423 . . . . 5  |-  ( ph  ->  ( ( a  e.  A  /\  b  e.  B )  ->  (
a  x.  b )  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) ) )
48 breq1 4042 . . . . . 6  |-  ( w  =  ( a  x.  b )  ->  (
w  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  <->  ( a  x.  b )  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) ) )
4948biimprcd 216 . . . . 5  |-  ( ( a  x.  b )  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  ->  (
w  =  ( a  x.  b )  ->  w  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) ) )
5047, 49syl6 29 . . . 4  |-  ( ph  ->  ( ( a  e.  A  /\  b  e.  B )  ->  (
w  =  ( a  x.  b )  ->  w  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) ) ) )
5150rexlimdvv 2686 . . 3  |-  ( ph  ->  ( E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b )  ->  w  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) ) )
5210, 51syl5bi 208 . 2  |-  ( ph  ->  ( w  e.  C  ->  w  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) ) )
5352ralrimiv 2638 1  |-  ( ph  ->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165   (/)c0 3468   class class class wbr 4039  (class class class)co 5874   supcsup 7209   RRcr 8752   0cc0 8753    x. cmul 8758    < clt 8883    <_ cle 8884
This theorem is referenced by:  supmullem2  9737  supmul  9738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056
  Copyright terms: Public domain W3C validator