MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppss Structured version   Unicode version

Theorem suppss 5855
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.)
Hypotheses
Ref Expression
suppss.f  |-  ( ph  ->  F : A --> B )
suppss.n  |-  ( (
ph  /\  k  e.  ( A  \  W ) )  ->  ( F `  k )  =  Z )
Assertion
Ref Expression
suppss  |-  ( ph  ->  ( `' F "
( _V  \  { Z } ) )  C_  W )
Distinct variable groups:    k, F    ph, k    k, W    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem suppss
StepHypRef Expression
1 suppss.f . . . 4  |-  ( ph  ->  F : A --> B )
2 ffn 5583 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
3 elpreima 5842 . . . 4  |-  ( F  Fn  A  ->  (
k  e.  ( `' F " ( _V 
\  { Z }
) )  <->  ( k  e.  A  /\  ( F `  k )  e.  ( _V  \  { Z } ) ) ) )
41, 2, 33syl 19 . . 3  |-  ( ph  ->  ( k  e.  ( `' F " ( _V 
\  { Z }
) )  <->  ( k  e.  A  /\  ( F `  k )  e.  ( _V  \  { Z } ) ) ) )
5 fvex 5734 . . . . . 6  |-  ( F `
 k )  e. 
_V
6 eldifsn 3919 . . . . . 6  |-  ( ( F `  k )  e.  ( _V  \  { Z } )  <->  ( ( F `  k )  e.  _V  /\  ( F `
 k )  =/= 
Z ) )
75, 6mpbiran 885 . . . . 5  |-  ( ( F `  k )  e.  ( _V  \  { Z } )  <->  ( F `  k )  =/=  Z
)
8 eldif 3322 . . . . . . . 8  |-  ( k  e.  ( A  \  W )  <->  ( k  e.  A  /\  -.  k  e.  W ) )
9 suppss.n . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( A  \  W ) )  ->  ( F `  k )  =  Z )
108, 9sylan2br 463 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  A  /\  -.  k  e.  W ) )  -> 
( F `  k
)  =  Z )
1110expr 599 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( -.  k  e.  W  ->  ( F `  k
)  =  Z ) )
1211necon1ad 2665 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  (
( F `  k
)  =/=  Z  -> 
k  e.  W ) )
137, 12syl5bi 209 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  (
( F `  k
)  e.  ( _V 
\  { Z }
)  ->  k  e.  W ) )
1413expimpd 587 . . 3  |-  ( ph  ->  ( ( k  e.  A  /\  ( F `
 k )  e.  ( _V  \  { Z } ) )  -> 
k  e.  W ) )
154, 14sylbid 207 . 2  |-  ( ph  ->  ( k  e.  ( `' F " ( _V 
\  { Z }
) )  ->  k  e.  W ) )
1615ssrdv 3346 1  |-  ( ph  ->  ( `' F "
( _V  \  { Z } ) )  C_  W )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   _Vcvv 2948    \ cdif 3309    C_ wss 3312   {csn 3806   `'ccnv 4869   "cima 4873    Fn wfn 5441   -->wf 5442   ` cfv 5446
This theorem is referenced by:  cantnfp1lem1  7626  cantnfp1lem3  7628  gsumzaddlem  15518  gsumzmhm  15525  gsumzinv  15532  gsumsub  15534  gsum2d2lem  15539  dprdsubg  15574  psrbaglesupp  16425  psrlidm  16459  psrridm  16460  mplsubglem  16490  mpllsslem  16491  mplsubrglem  16494  mvrcl  16504  evlslem3  19927  mdeg0  19985  deg1mul3le  20031  jensen  20819  lcomfsup  26728  frlmssuvc1  27204  frlmsslsp  27206  frlmup1  27208  frlmup2  27209
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454
  Copyright terms: Public domain W3C validator