MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssof1 Structured version   Unicode version

Theorem suppssof1 6348
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssof1.s  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  C_  L )
suppssof1.o  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
suppssof1.a  |-  ( ph  ->  A : D --> V )
suppssof1.b  |-  ( ph  ->  B : D --> R )
suppssof1.d  |-  ( ph  ->  D  e.  W )
Assertion
Ref Expression
suppssof1  |-  ( ph  ->  ( `' ( A  o F O B ) " ( _V 
\  { Z }
) )  C_  L
)
Distinct variable groups:    ph, v    v, B    v, O    v, R    v, Y    v, Z
Allowed substitution hints:    A( v)    D( v)    L( v)    V( v)    W( v)

Proof of Theorem suppssof1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . . 6  |-  ( ph  ->  A : D --> V )
2 ffn 5593 . . . . . 6  |-  ( A : D --> V  ->  A  Fn  D )
31, 2syl 16 . . . . 5  |-  ( ph  ->  A  Fn  D )
4 suppssof1.b . . . . . 6  |-  ( ph  ->  B : D --> R )
5 ffn 5593 . . . . . 6  |-  ( B : D --> R  ->  B  Fn  D )
64, 5syl 16 . . . . 5  |-  ( ph  ->  B  Fn  D )
7 suppssof1.d . . . . 5  |-  ( ph  ->  D  e.  W )
8 inidm 3552 . . . . 5  |-  ( D  i^i  D )  =  D
9 eqidd 2439 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( A `  x )  =  ( A `  x ) )
10 eqidd 2439 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( B `  x )  =  ( B `  x ) )
113, 6, 7, 7, 8, 9, 10offval 6314 . . . 4  |-  ( ph  ->  ( A  o F O B )  =  ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) ) )
1211cnveqd 5050 . . 3  |-  ( ph  ->  `' ( A  o F O B )  =  `' ( x  e.  D  |->  ( ( A `
 x ) O ( B `  x
) ) ) )
1312imaeq1d 5204 . 2  |-  ( ph  ->  ( `' ( A  o F O B ) " ( _V 
\  { Z }
) )  =  ( `' ( x  e.  D  |->  ( ( A `
 x ) O ( B `  x
) ) ) "
( _V  \  { Z } ) ) )
141feqmptd 5781 . . . . . 6  |-  ( ph  ->  A  =  ( x  e.  D  |->  ( A `
 x ) ) )
1514cnveqd 5050 . . . . 5  |-  ( ph  ->  `' A  =  `' ( x  e.  D  |->  ( A `  x
) ) )
1615imaeq1d 5204 . . . 4  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  =  ( `' ( x  e.  D  |->  ( A `
 x ) )
" ( _V  \  { Y } ) ) )
17 suppssof1.s . . . 4  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  C_  L )
1816, 17eqsstr3d 3385 . . 3  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A `
 x ) )
" ( _V  \  { Y } ) ) 
C_  L )
19 suppssof1.o . . 3  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
20 fvex 5744 . . . 4  |-  ( A `
 x )  e. 
_V
2120a1i 11 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( A `  x )  e.  _V )
224ffvelrnda 5872 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( B `  x )  e.  R )
2318, 19, 21, 22suppssov1 6304 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) )
" ( _V  \  { Z } ) ) 
C_  L )
2413, 23eqsstrd 3384 1  |-  ( ph  ->  ( `' ( A  o F O B ) " ( _V 
\  { Z }
) )  C_  L
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958    \ cdif 3319    C_ wss 3322   {csn 3816    e. cmpt 4268   `'ccnv 4879   "cima 4883    Fn wfn 5451   -->wf 5452   ` cfv 5456  (class class class)co 6083    o Fcof 6305
This theorem is referenced by:  psrbagev1  16568  jensen  20829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307
  Copyright terms: Public domain W3C validator