MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssov1 Unicode version

Theorem suppssov1 6242
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssov1.s  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
suppssov1.o  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
suppssov1.a  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
suppssov1.b  |-  ( (
ph  /\  x  e.  D )  ->  B  e.  R )
Assertion
Ref Expression
suppssov1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  L )
Distinct variable groups:    ph, v    ph, x    v, B    v, O    v, R    v, Y    x, Y    v, Z    x, Z
Allowed substitution hints:    A( x, v)    B( x)    D( x, v)    R( x)    L( x, v)    O( x)    V( x, v)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
2 elex 2908 . . . . . . . 8  |-  ( A  e.  V  ->  A  e.  _V )
31, 2syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  _V )
43adantr 452 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  e.  _V )
5 eldifsni 3872 . . . . . . . 8  |-  ( ( A O B )  e.  ( _V  \  { Z } )  -> 
( A O B )  =/=  Z )
6 suppssov1.b . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  D )  ->  B  e.  R )
7 suppssov1.o . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
87ralrimiva 2733 . . . . . . . . . . . 12  |-  ( ph  ->  A. v  e.  R  ( Y O v )  =  Z )
98adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  D )  ->  A. v  e.  R  ( Y O v )  =  Z )
10 oveq2 6029 . . . . . . . . . . . . 13  |-  ( v  =  B  ->  ( Y O v )  =  ( Y O B ) )
1110eqeq1d 2396 . . . . . . . . . . . 12  |-  ( v  =  B  ->  (
( Y O v )  =  Z  <->  ( Y O B )  =  Z ) )
1211rspcva 2994 . . . . . . . . . . 11  |-  ( ( B  e.  R  /\  A. v  e.  R  ( Y O v )  =  Z )  -> 
( Y O B )  =  Z )
136, 9, 12syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  D )  ->  ( Y O B )  =  Z )
14 oveq1 6028 . . . . . . . . . . 11  |-  ( A  =  Y  ->  ( A O B )  =  ( Y O B ) )
1514eqeq1d 2396 . . . . . . . . . 10  |-  ( A  =  Y  ->  (
( A O B )  =  Z  <->  ( Y O B )  =  Z ) )
1613, 15syl5ibrcom 214 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  ( A  =  Y  ->  ( A O B )  =  Z ) )
1716necon3d 2589 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  =/=  Z  ->  A  =/=  Y ) )
185, 17syl5 30 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  e.  ( _V 
\  { Z }
)  ->  A  =/=  Y ) )
1918imp 419 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  =/=  Y )
20 eldifsn 3871 . . . . . 6  |-  ( A  e.  ( _V  \  { Y } )  <->  ( A  e.  _V  /\  A  =/= 
Y ) )
214, 19, 20sylanbrc 646 . . . . 5  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  e.  ( _V  \  { Y } ) )
2221ex 424 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  e.  ( _V 
\  { Z }
)  ->  A  e.  ( _V  \  { Y } ) ) )
2322ss2rabdv 3368 . . 3  |-  ( ph  ->  { x  e.  D  |  ( A O B )  e.  ( _V  \  { Z } ) }  C_  { x  e.  D  |  A  e.  ( _V  \  { Y } ) } )
24 eqid 2388 . . . 4  |-  ( x  e.  D  |->  ( A O B ) )  =  ( x  e.  D  |->  ( A O B ) )
2524mptpreima 5304 . . 3  |-  ( `' ( x  e.  D  |->  ( A O B ) ) " ( _V  \  { Z }
) )  =  {
x  e.  D  | 
( A O B )  e.  ( _V 
\  { Z }
) }
26 eqid 2388 . . . 4  |-  ( x  e.  D  |->  A )  =  ( x  e.  D  |->  A )
2726mptpreima 5304 . . 3  |-  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
) )  =  {
x  e.  D  |  A  e.  ( _V  \  { Y } ) }
2823, 25, 273sstr4g 3333 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  ( `' ( x  e.  D  |->  A ) " ( _V 
\  { Y }
) ) )
29 suppssov1.s . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
3028, 29sstrd 3302 1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   {crab 2654   _Vcvv 2900    \ cdif 3261    C_ wss 3264   {csn 3758    e. cmpt 4208   `'ccnv 4818   "cima 4822  (class class class)co 6021
This theorem is referenced by:  suppssof1  6286  ply1coe  16612  evlslem6  19802  plypf1  19999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-mpt 4210  df-xp 4825  df-rel 4826  df-cnv 4827  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fv 5403  df-ov 6024
  Copyright terms: Public domain W3C validator