MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssov1 Structured version   Unicode version

Theorem suppssov1 6294
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssov1.s  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
suppssov1.o  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
suppssov1.a  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
suppssov1.b  |-  ( (
ph  /\  x  e.  D )  ->  B  e.  R )
Assertion
Ref Expression
suppssov1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  L )
Distinct variable groups:    ph, v    ph, x    v, B    v, O    v, R    v, Y    x, Y    v, Z    x, Z
Allowed substitution hints:    A( x, v)    B( x)    D( x, v)    R( x)    L( x, v)    O( x)    V( x, v)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
2 elex 2956 . . . . . . . 8  |-  ( A  e.  V  ->  A  e.  _V )
31, 2syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  _V )
43adantr 452 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  e.  _V )
5 eldifsni 3920 . . . . . . . 8  |-  ( ( A O B )  e.  ( _V  \  { Z } )  -> 
( A O B )  =/=  Z )
6 suppssov1.b . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  D )  ->  B  e.  R )
7 suppssov1.o . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
87ralrimiva 2781 . . . . . . . . . . . 12  |-  ( ph  ->  A. v  e.  R  ( Y O v )  =  Z )
98adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  D )  ->  A. v  e.  R  ( Y O v )  =  Z )
10 oveq2 6081 . . . . . . . . . . . . 13  |-  ( v  =  B  ->  ( Y O v )  =  ( Y O B ) )
1110eqeq1d 2443 . . . . . . . . . . . 12  |-  ( v  =  B  ->  (
( Y O v )  =  Z  <->  ( Y O B )  =  Z ) )
1211rspcva 3042 . . . . . . . . . . 11  |-  ( ( B  e.  R  /\  A. v  e.  R  ( Y O v )  =  Z )  -> 
( Y O B )  =  Z )
136, 9, 12syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  D )  ->  ( Y O B )  =  Z )
14 oveq1 6080 . . . . . . . . . . 11  |-  ( A  =  Y  ->  ( A O B )  =  ( Y O B ) )
1514eqeq1d 2443 . . . . . . . . . 10  |-  ( A  =  Y  ->  (
( A O B )  =  Z  <->  ( Y O B )  =  Z ) )
1613, 15syl5ibrcom 214 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  ( A  =  Y  ->  ( A O B )  =  Z ) )
1716necon3d 2636 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  =/=  Z  ->  A  =/=  Y ) )
185, 17syl5 30 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  e.  ( _V 
\  { Z }
)  ->  A  =/=  Y ) )
1918imp 419 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  =/=  Y )
20 eldifsn 3919 . . . . . 6  |-  ( A  e.  ( _V  \  { Y } )  <->  ( A  e.  _V  /\  A  =/= 
Y ) )
214, 19, 20sylanbrc 646 . . . . 5  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  e.  ( _V  \  { Y } ) )
2221ex 424 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  e.  ( _V 
\  { Z }
)  ->  A  e.  ( _V  \  { Y } ) ) )
2322ss2rabdv 3416 . . 3  |-  ( ph  ->  { x  e.  D  |  ( A O B )  e.  ( _V  \  { Z } ) }  C_  { x  e.  D  |  A  e.  ( _V  \  { Y } ) } )
24 eqid 2435 . . . 4  |-  ( x  e.  D  |->  ( A O B ) )  =  ( x  e.  D  |->  ( A O B ) )
2524mptpreima 5355 . . 3  |-  ( `' ( x  e.  D  |->  ( A O B ) ) " ( _V  \  { Z }
) )  =  {
x  e.  D  | 
( A O B )  e.  ( _V 
\  { Z }
) }
26 eqid 2435 . . . 4  |-  ( x  e.  D  |->  A )  =  ( x  e.  D  |->  A )
2726mptpreima 5355 . . 3  |-  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
) )  =  {
x  e.  D  |  A  e.  ( _V  \  { Y } ) }
2823, 25, 273sstr4g 3381 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  ( `' ( x  e.  D  |->  A ) " ( _V 
\  { Y }
) ) )
29 suppssov1.s . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
3028, 29sstrd 3350 1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   {crab 2701   _Vcvv 2948    \ cdif 3309    C_ wss 3312   {csn 3806    e. cmpt 4258   `'ccnv 4869   "cima 4873  (class class class)co 6073
This theorem is referenced by:  suppssof1  6338  ply1coe  16676  evlslem6  19926  plypf1  20123
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-xp 4876  df-rel 4877  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fv 5454  df-ov 6076
  Copyright terms: Public domain W3C validator