MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprzcl Unicode version

Theorem suprzcl 10091
Description: The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
suprzcl  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  A )
Distinct variable group:    x, y, A

Proof of Theorem suprzcl
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 10031 . . . . . 6  |-  ZZ  C_  RR
2 sstr 3187 . . . . . 6  |-  ( ( A  C_  ZZ  /\  ZZ  C_  RR )  ->  A  C_  RR )
31, 2mpan2 652 . . . . 5  |-  ( A 
C_  ZZ  ->  A  C_  RR )
4 suprcl 9714 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
53, 4syl3an1 1215 . . . 4  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
65ltm1d 9689 . . 3  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  ) )
7 peano2rem 9113 . . . . . 6  |-  ( sup ( A ,  RR ,  <  )  e.  RR  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
84, 7syl 15 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
9 suprlub 9716 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )
108, 9mpdan 649 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )
113, 10syl3an1 1215 . . 3  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )
126, 11mpbid 201 . 2  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  -  1 )  <  z )
13 simpl1 958 . . . . . . . . . . . 12  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A  C_  ZZ )
1413sselda 3180 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  e.  ZZ )
151, 14sseldi 3178 . . . . . . . . . 10  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  e.  RR )
165adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  RR )
1716adantr 451 . . . . . . . . . 10  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
18 simprl 732 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  A )
1913, 18sseldd 3181 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  ZZ )
20 zre 10028 . . . . . . . . . . . . 13  |-  ( z  e.  ZZ  ->  z  e.  RR )
2119, 20syl 15 . . . . . . . . . . . 12  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  RR )
22 peano2re 8985 . . . . . . . . . . . 12  |-  ( z  e.  RR  ->  (
z  +  1 )  e.  RR )
2321, 22syl 15 . . . . . . . . . . 11  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( z  +  1 )  e.  RR )
2423adantr 451 . . . . . . . . . 10  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  (
z  +  1 )  e.  RR )
25 suprub 9715 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
263, 25syl3anl1 1230 . . . . . . . . . . 11  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
2726adantlr 695 . . . . . . . . . 10  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
28 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  z )
29 1re 8837 . . . . . . . . . . . . . 14  |-  1  e.  RR
3029a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  1  e.  RR )
3116, 30, 21ltsubaddd 9368 . . . . . . . . . . . 12  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  z  <->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) ) )
3228, 31mpbid 201 . . . . . . . . . . 11  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3332adantr 451 . . . . . . . . . 10  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3415, 17, 24, 27, 33lelttrd 8974 . . . . . . . . 9  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  <  ( z  +  1 ) )
3519adantr 451 . . . . . . . . . 10  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  z  e.  ZZ )
36 zleltp1 10068 . . . . . . . . . 10  |-  ( ( w  e.  ZZ  /\  z  e.  ZZ )  ->  ( w  <_  z  <->  w  <  ( z  +  1 ) ) )
3714, 35, 36syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  (
w  <_  z  <->  w  <  ( z  +  1 ) ) )
3834, 37mpbird 223 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  <_  z )
3938ralrimiva 2626 . . . . . . 7  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A. w  e.  A  w  <_  z )
40 suprleub 9718 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  RR )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
413, 40syl3anl1 1230 . . . . . . . 8  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  RR )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
4221, 41syldan 456 . . . . . . 7  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
4339, 42mpbird 223 . . . . . 6  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <_  z )
44 suprub 9715 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  z  <_  sup ( A ,  RR ,  <  ) )
453, 44syl3anl1 1230 . . . . . . 7  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  z  <_  sup ( A ,  RR ,  <  ) )
4645adantrr 697 . . . . . 6  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  <_  sup ( A ,  RR ,  <  ) )
4716, 21letri3d 8961 . . . . . 6  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  =  z  <->  ( sup ( A ,  RR ,  <  )  <_  z  /\  z  <_  sup ( A ,  RR ,  <  ) ) ) )
4843, 46, 47mpbir2and 888 . . . . 5  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  z )
4948, 18eqeltrd 2357 . . . 4  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  A )
5049expr 598 . . 3  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  (
( sup ( A ,  RR ,  <  )  -  1 )  < 
z  ->  sup ( A ,  RR ,  <  )  e.  A ) )
5150rexlimdva 2667 . 2  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( E. z  e.  A  ( sup ( A ,  RR ,  <  )  -  1 )  <  z  ->  sup ( A ,  RR ,  <  )  e.  A
) )
5212, 51mpd 14 1  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   class class class wbr 4023  (class class class)co 5858   supcsup 7193   RRcr 8736   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    - cmin 9037   ZZcz 10024
This theorem is referenced by:  rpnnen1lem1  10342  rpnnen1lem2  10343  pgpssslw  14925  plyeq0lem  19592
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025
  Copyright terms: Public domain W3C validator