MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprzub Structured version   Unicode version

Theorem suprzub 10572
Description: The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.)
Assertion
Ref Expression
suprzub  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  B  <_  sup ( A ,  RR ,  <  ) )
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem suprzub
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simp3 960 . . 3  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  B  e.  A )
2 ltso 9161 . . . . 5  |-  <  Or  RR
32a1i 11 . . . 4  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  <  Or  RR )
4 simp1 958 . . . . . 6  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  A  C_  ZZ )
5 zssre 10294 . . . . . 6  |-  ZZ  C_  RR
64, 5syl6ss 3362 . . . . 5  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  A  C_  RR )
7 ne0i 3636 . . . . . . 7  |-  ( B  e.  A  ->  A  =/=  (/) )
81, 7syl 16 . . . . . 6  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  A  =/=  (/) )
9 simp2 959 . . . . . 6  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)
10 zsupss 10570 . . . . . 6  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)  ->  E. x  e.  A  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
114, 8, 9, 10syl3anc 1185 . . . . 5  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  E. x  e.  A  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
12 ssrexv 3410 . . . . 5  |-  ( A 
C_  RR  ->  ( E. x  e.  A  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )
136, 11, 12sylc 59 . . . 4  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
143, 13supub 7467 . . 3  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  ( B  e.  A  ->  -.  sup ( A ,  RR ,  <  )  <  B ) )
151, 14mpd 15 . 2  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  -.  sup ( A ,  RR ,  <  )  <  B )
166, 1sseldd 3351 . . 3  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  B  e.  RR )
17 suprzcl2 10571 . . . . 5  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  A )
184, 8, 9, 17syl3anc 1185 . . . 4  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  sup ( A ,  RR ,  <  )  e.  A )
196, 18sseldd 3351 . . 3  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
2016, 19lenltd 9224 . 2  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  ( B  <_  sup ( A ,  RR ,  <  )  <->  -.  sup ( A ,  RR ,  <  )  <  B ) )
2115, 20mpbird 225 1  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  B  <_  sup ( A ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708    C_ wss 3322   (/)c0 3630   class class class wbr 4215    Or wor 4505   supcsup 7448   RRcr 8994    < clt 9125    <_ cle 9126   ZZcz 10287
This theorem is referenced by:  gcdcllem3  13018  pcprendvds  13219  pcpremul  13222  prmreclem1  13289  0ram  13393  gexex  15473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494
  Copyright terms: Public domain W3C validator