MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsr Unicode version

Theorem supsr 8921
Description: A non-empty, bounded set of signed reals has a supremum. (Cotributed by Mario Carneiro, 15-Jun-2013.) (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
supsr  |-  ( ( A  =/=  (/)  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem supsr
Dummy variables  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3581 . . 3  |-  ( A  =/=  (/)  <->  E. u  u  e.  A )
2 ltrelsr 8880 . . . . . . . . . . . . 13  |-  <R  C_  ( R.  X.  R. )
32brel 4867 . . . . . . . . . . . 12  |-  ( y 
<R  x  ->  ( y  e.  R.  /\  x  e.  R. ) )
43simpld 446 . . . . . . . . . . 11  |-  ( y 
<R  x  ->  y  e. 
R. )
54ralimi 2725 . . . . . . . . . 10  |-  ( A. y  e.  A  y  <R  x  ->  A. y  e.  A  y  e.  R. )
6 dfss3 3282 . . . . . . . . . 10  |-  ( A 
C_  R.  <->  A. y  e.  A  y  e.  R. )
75, 6sylibr 204 . . . . . . . . 9  |-  ( A. y  e.  A  y  <R  x  ->  A  C_  R. )
87sseld 3291 . . . . . . . 8  |-  ( A. y  e.  A  y  <R  x  ->  ( u  e.  A  ->  u  e. 
R. ) )
98rexlimivw 2770 . . . . . . 7  |-  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  ( u  e.  A  ->  u  e. 
R. ) )
109impcom 420 . . . . . 6  |-  ( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  u  e.  R. )
11 eleq1 2448 . . . . . . . . 9  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
u  e.  A  <->  if (
u  e.  R. ,  u ,  1R )  e.  A ) )
1211anbi1d 686 . . . . . . . 8  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  <->  ( if ( u  e.  R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
) ) )
1312imbi1d 309 . . . . . . 7  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
)  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )  <->  ( ( if ( u  e.  R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
)  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) ) )
14 opeq1 3927 . . . . . . . . . . . 12  |-  ( v  =  w  ->  <. v ,  1P >.  =  <. w ,  1P >. )
15 eceq1 6878 . . . . . . . . . . . 12  |-  ( <.
v ,  1P >.  = 
<. w ,  1P >.  ->  [ <. v ,  1P >. ]  ~R  =  [ <. w ,  1P >. ]  ~R  )
1614, 15syl 16 . . . . . . . . . . 11  |-  ( v  =  w  ->  [ <. v ,  1P >. ]  ~R  =  [ <. w ,  1P >. ]  ~R  )
1716oveq2d 6037 . . . . . . . . . 10  |-  ( v  =  w  ->  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  =  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  ) )
1817eleq1d 2454 . . . . . . . . 9  |-  ( v  =  w  ->  (
( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  e.  A  <->  ( if ( u  e. 
R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  )  e.  A
) )
1918cbvabv 2507 . . . . . . . 8  |-  { v  |  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  e.  A }  =  {
w  |  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }
20 1sr 8890 . . . . . . . . 9  |-  1R  e.  R.
2120elimel 3735 . . . . . . . 8  |-  if ( u  e.  R. ,  u ,  1R )  e.  R.
2219, 21supsrlem 8920 . . . . . . 7  |-  ( ( if ( u  e. 
R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
2313, 22dedth 3724 . . . . . 6  |-  ( u  e.  R.  ->  (
( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2410, 23mpcom 34 . . . . 5  |-  ( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
2524ex 424 . . . 4  |-  ( u  e.  A  ->  ( E. x  e.  R.  A. y  e.  A  y 
<R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2625exlimiv 1641 . . 3  |-  ( E. u  u  e.  A  ->  ( E. x  e. 
R.  A. y  e.  A  y  <R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
271, 26sylbi 188 . 2  |-  ( A  =/=  (/)  ->  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2827imp 419 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   {cab 2374    =/= wne 2551   A.wral 2650   E.wrex 2651    C_ wss 3264   (/)c0 3572   ifcif 3683   <.cop 3761   class class class wbr 4154  (class class class)co 6021   [cec 6840   1Pc1p 8669    ~R cer 8675   R.cnr 8676   1Rc1r 8678    +R cplr 8680    <R cltr 8682
This theorem is referenced by:  axpre-sup  8978
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-omul 6666  df-er 6842  df-ec 6844  df-qs 6848  df-ni 8683  df-pli 8684  df-mi 8685  df-lti 8686  df-plpq 8719  df-mpq 8720  df-ltpq 8721  df-enq 8722  df-nq 8723  df-erq 8724  df-plq 8725  df-mq 8726  df-1nq 8727  df-rq 8728  df-ltnq 8729  df-np 8792  df-1p 8793  df-plp 8794  df-mp 8795  df-ltp 8796  df-plpr 8866  df-mpr 8867  df-enr 8868  df-nr 8869  df-plr 8870  df-mr 8871  df-ltr 8872  df-0r 8873  df-1r 8874  df-m1r 8875
  Copyright terms: Public domain W3C validator