MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsr Unicode version

Theorem supsr 8976
Description: A non-empty, bounded set of signed reals has a supremum. (Cotributed by Mario Carneiro, 15-Jun-2013.) (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
supsr  |-  ( ( A  =/=  (/)  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem supsr
Dummy variables  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3629 . . 3  |-  ( A  =/=  (/)  <->  E. u  u  e.  A )
2 ltrelsr 8935 . . . . . . . . . . . . 13  |-  <R  C_  ( R.  X.  R. )
32brel 4917 . . . . . . . . . . . 12  |-  ( y 
<R  x  ->  ( y  e.  R.  /\  x  e.  R. ) )
43simpld 446 . . . . . . . . . . 11  |-  ( y 
<R  x  ->  y  e. 
R. )
54ralimi 2773 . . . . . . . . . 10  |-  ( A. y  e.  A  y  <R  x  ->  A. y  e.  A  y  e.  R. )
6 dfss3 3330 . . . . . . . . . 10  |-  ( A 
C_  R.  <->  A. y  e.  A  y  e.  R. )
75, 6sylibr 204 . . . . . . . . 9  |-  ( A. y  e.  A  y  <R  x  ->  A  C_  R. )
87sseld 3339 . . . . . . . 8  |-  ( A. y  e.  A  y  <R  x  ->  ( u  e.  A  ->  u  e. 
R. ) )
98rexlimivw 2818 . . . . . . 7  |-  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  ( u  e.  A  ->  u  e. 
R. ) )
109impcom 420 . . . . . 6  |-  ( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  u  e.  R. )
11 eleq1 2495 . . . . . . . . 9  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
u  e.  A  <->  if (
u  e.  R. ,  u ,  1R )  e.  A ) )
1211anbi1d 686 . . . . . . . 8  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  <->  ( if ( u  e.  R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
) ) )
1312imbi1d 309 . . . . . . 7  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
)  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )  <->  ( ( if ( u  e.  R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
)  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) ) )
14 opeq1 3976 . . . . . . . . . . . 12  |-  ( v  =  w  ->  <. v ,  1P >.  =  <. w ,  1P >. )
15 eceq1 6932 . . . . . . . . . . . 12  |-  ( <.
v ,  1P >.  = 
<. w ,  1P >.  ->  [ <. v ,  1P >. ]  ~R  =  [ <. w ,  1P >. ]  ~R  )
1614, 15syl 16 . . . . . . . . . . 11  |-  ( v  =  w  ->  [ <. v ,  1P >. ]  ~R  =  [ <. w ,  1P >. ]  ~R  )
1716oveq2d 6088 . . . . . . . . . 10  |-  ( v  =  w  ->  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  =  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  ) )
1817eleq1d 2501 . . . . . . . . 9  |-  ( v  =  w  ->  (
( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  e.  A  <->  ( if ( u  e. 
R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  )  e.  A
) )
1918cbvabv 2554 . . . . . . . 8  |-  { v  |  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  e.  A }  =  {
w  |  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }
20 1sr 8945 . . . . . . . . 9  |-  1R  e.  R.
2120elimel 3783 . . . . . . . 8  |-  if ( u  e.  R. ,  u ,  1R )  e.  R.
2219, 21supsrlem 8975 . . . . . . 7  |-  ( ( if ( u  e. 
R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
2313, 22dedth 3772 . . . . . 6  |-  ( u  e.  R.  ->  (
( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2410, 23mpcom 34 . . . . 5  |-  ( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
2524ex 424 . . . 4  |-  ( u  e.  A  ->  ( E. x  e.  R.  A. y  e.  A  y 
<R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2625exlimiv 1644 . . 3  |-  ( E. u  u  e.  A  ->  ( E. x  e. 
R.  A. y  e.  A  y  <R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
271, 26sylbi 188 . 2  |-  ( A  =/=  (/)  ->  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2827imp 419 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421    =/= wne 2598   A.wral 2697   E.wrex 2698    C_ wss 3312   (/)c0 3620   ifcif 3731   <.cop 3809   class class class wbr 4204  (class class class)co 6072   [cec 6894   1Pc1p 8724    ~R cer 8730   R.cnr 8731   1Rc1r 8733    +R cplr 8735    <R cltr 8737
This theorem is referenced by:  axpre-sup  9033
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-omul 6720  df-er 6896  df-ec 6898  df-qs 6902  df-ni 8738  df-pli 8739  df-mi 8740  df-lti 8741  df-plpq 8774  df-mpq 8775  df-ltpq 8776  df-enq 8777  df-nq 8778  df-erq 8779  df-plq 8780  df-mq 8781  df-1nq 8782  df-rq 8783  df-ltnq 8784  df-np 8847  df-1p 8848  df-plp 8849  df-mp 8850  df-ltp 8851  df-plpr 8921  df-mpr 8922  df-enr 8923  df-nr 8924  df-plr 8925  df-mr 8926  df-ltr 8927  df-0r 8928  df-1r 8929  df-m1r 8930
  Copyright terms: Public domain W3C validator