MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supub Unicode version

Theorem supub 7226
Description: A supremum is an upper bound. See also supcl 7225 and suplub 7227.

This proof demonstrates how to expand an iota-based definition (df-iota 5235) using riotacl2 6334.

(Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)

Hypotheses
Ref Expression
supmo.1  |-  ( ph  ->  R  Or  A )
supcl.2  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
Assertion
Ref Expression
supub  |-  ( ph  ->  ( C  e.  B  ->  -.  sup ( B ,  A ,  R
) R C ) )
Distinct variable groups:    x, y,
z, A    x, R, y, z    x, B, y, z
Allowed substitution hints:    ph( x, y, z)    C( x, y, z)

Proof of Theorem supub
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . . . 6  |-  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  A. y  e.  B  -.  x R y )
21a1i 10 . . . . 5  |-  ( x  e.  A  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )  ->  A. y  e.  B  -.  x R y ) )
32ss2rabi 3268 . . . 4  |-  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  C_  { x  e.  A  |  A. y  e.  B  -.  x R y }
4 supmo.1 . . . . . 6  |-  ( ph  ->  R  Or  A )
5 supcl.2 . . . . . 6  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
64, 5supval2 7222 . . . . 5  |-  ( ph  ->  sup ( B ,  A ,  R )  =  ( iota_ x  e.  A ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
74, 5supeu 7221 . . . . . 6  |-  ( ph  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
8 riotacl2 6334 . . . . . 6  |-  ( E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  ( iota_ x  e.  A ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  e.  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) } )
97, 8syl 15 . . . . 5  |-  ( ph  ->  ( iota_ x  e.  A
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) )  e.  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) } )
106, 9eqeltrd 2370 . . . 4  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) } )
113, 10sseldi 3191 . . 3  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  { x  e.  A  |  A. y  e.  B  -.  x R y } )
12 breq2 4043 . . . . . . . 8  |-  ( y  =  w  ->  (
x R y  <->  x R w ) )
1312notbid 285 . . . . . . 7  |-  ( y  =  w  ->  ( -.  x R y  <->  -.  x R w ) )
1413cbvralv 2777 . . . . . 6  |-  ( A. y  e.  B  -.  x R y  <->  A. w  e.  B  -.  x R w )
15 breq1 4042 . . . . . . . 8  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( x R w  <->  sup ( B ,  A ,  R ) R w ) )
1615notbid 285 . . . . . . 7  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( -.  x R w  <->  -.  sup ( B ,  A ,  R ) R w ) )
1716ralbidv 2576 . . . . . 6  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( A. w  e.  B  -.  x R w  <->  A. w  e.  B  -.  sup ( B ,  A ,  R ) R w ) )
1814, 17syl5bb 248 . . . . 5  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( A. y  e.  B  -.  x R y  <->  A. w  e.  B  -.  sup ( B ,  A ,  R ) R w ) )
1918elrab 2936 . . . 4  |-  ( sup ( B ,  A ,  R )  e.  {
x  e.  A  |  A. y  e.  B  -.  x R y }  <-> 
( sup ( B ,  A ,  R
)  e.  A  /\  A. w  e.  B  -.  sup ( B ,  A ,  R ) R w ) )
2019simprbi 450 . . 3  |-  ( sup ( B ,  A ,  R )  e.  {
x  e.  A  |  A. y  e.  B  -.  x R y }  ->  A. w  e.  B  -.  sup ( B ,  A ,  R ) R w )
2111, 20syl 15 . 2  |-  ( ph  ->  A. w  e.  B  -.  sup ( B ,  A ,  R ) R w )
22 breq2 4043 . . . 4  |-  ( w  =  C  ->  ( sup ( B ,  A ,  R ) R w  <->  sup ( B ,  A ,  R ) R C ) )
2322notbid 285 . . 3  |-  ( w  =  C  ->  ( -.  sup ( B ,  A ,  R ) R w  <->  -.  sup ( B ,  A ,  R ) R C ) )
2423rspccv 2894 . 2  |-  ( A. w  e.  B  -.  sup ( B ,  A ,  R ) R w  ->  ( C  e.  B  ->  -.  sup ( B ,  A ,  R ) R C ) )
2521, 24syl 15 1  |-  ( ph  ->  ( C  e.  B  ->  -.  sup ( B ,  A ,  R
) R C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   E!wreu 2558   {crab 2560   class class class wbr 4039    Or wor 4329   iota_crio 6313   supcsup 7209
This theorem is referenced by:  suplub2  7228  supmax  7232  supiso  7239  suprub  9731  infmrlb  9751  suprzub  10325  supxrun  10650  supxrub  10659  infmxrlb  10668  dgrub  19632  ballotlemimin  23080  ballotlemfrcn0  23104  supssd  23263  ssnnssfz  23292  itg2addnclem  25003  supubt  26524
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-po 4330  df-so 4331  df-iota 5235  df-riota 6320  df-sup 7210
  Copyright terms: Public domain W3C validator