MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrlub Unicode version

Theorem supxrlub 10691
Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
supxrlub  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <  sup ( A ,  RR* ,  <  )  <->  E. x  e.  A  B  <  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem supxrlub
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 10522 . . 3  |-  <  Or  RR*
21a1i 10 . 2  |-  ( A 
C_  RR*  ->  <  Or  RR* )
3 xrsupss 10674 . 2  |-  ( A 
C_  RR*  ->  E. y  e.  RR*  ( A. z  e.  A  -.  y  <  z  /\  A. z  e.  RR*  ( z  < 
y  ->  E. x  e.  A  z  <  x ) ) )
4 id 19 . 2  |-  ( A 
C_  RR*  ->  A  C_  RR* )
52, 3, 4suplub2 7257 1  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <  sup ( A ,  RR* ,  <  )  <->  E. x  e.  A  B  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1701   E.wrex 2578    C_ wss 3186   class class class wbr 4060    Or wor 4350   supcsup 7238   RR*cxr 8911    < clt 8912
This theorem is referenced by:  supxrleub  10692  xrge0tsms  18391  xrofsup  23272  supxrnemnf  23273  xrge0tsmsd  23360  esumlub  23628  itg2addnclem  25317  itg2gt0cn  25320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-po 4351  df-so 4352  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-riota 6346  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-sup 7239  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085
  Copyright terms: Public domain W3C validator