MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrre Unicode version

Theorem supxrre 10662
Description: The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005.) (Proof shortened by Mario Carneiro, 7-Sep-2014.)
Assertion
Ref Expression
supxrre  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR* ,  <  )  =  sup ( A ,  RR ,  <  ) )
Distinct variable group:    x, y, A

Proof of Theorem supxrre
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 suprcl 9730 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
21leidd 9355 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  <_  sup ( A ,  RR ,  <  ) )
3 suprleub 9734 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  sup ( A ,  RR ,  <  )  e.  RR )  ->  ( sup ( A ,  RR ,  <  )  <_  sup ( A ,  RR ,  <  )  <->  A. z  e.  A  z  <_  sup ( A ,  RR ,  <  ) ) )
41, 3mpdan 649 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR ,  <  )  <_  sup ( A ,  RR ,  <  )  <->  A. z  e.  A  z  <_  sup ( A ,  RR ,  <  ) ) )
5 simp1 955 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  A  C_  RR )
6 ressxr 8892 . . . . . 6  |-  RR  C_  RR*
75, 6syl6ss 3204 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  A  C_  RR* )
81rexrd 8897 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR* )
9 supxrleub 10661 . . . . 5  |-  ( ( A  C_  RR*  /\  sup ( A ,  RR ,  <  )  e.  RR* )  ->  ( sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR ,  <  )  <->  A. z  e.  A  z  <_  sup ( A ,  RR ,  <  ) ) )
107, 8, 9syl2anc 642 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR ,  <  )  <->  A. z  e.  A  z  <_  sup ( A ,  RR ,  <  ) ) )
114, 10bitr4d 247 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR ,  <  )  <_  sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR ,  <  ) ) )
122, 11mpbid 201 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR ,  <  ) )
13 supxrcl 10649 . . . . 5  |-  ( A 
C_  RR*  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
147, 13syl 15 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
15 xrleid 10500 . . . 4  |-  ( sup ( A ,  RR* ,  <  )  e.  RR*  ->  sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR* ,  <  ) )
1614, 15syl 15 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR* ,  <  ) )
17 supxrleub 10661 . . . . 5  |-  ( ( A  C_  RR*  /\  sup ( A ,  RR* ,  <  )  e.  RR* )  ->  ( sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR* ,  <  )  <->  A. x  e.  A  x  <_  sup ( A ,  RR* ,  <  ) ) )
187, 14, 17syl2anc 642 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR* ,  <  )  <->  A. x  e.  A  x  <_  sup ( A ,  RR* ,  <  ) ) )
19 simp2 956 . . . . . . . 8  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  A  =/=  (/) )
20 n0 3477 . . . . . . . 8  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
2119, 20sylib 188 . . . . . . 7  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  E. z 
z  e.  A )
22 mnfxr 10472 . . . . . . . . . . 11  |-  -oo  e.  RR*
2322a1i 10 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  -oo  e.  RR* )
245sselda 3193 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  z  e.  RR )
2524rexrd 8897 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  z  e.  RR* )
2614adantr 451 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
27 mnflt 10480 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  -oo  <  z )
2824, 27syl 15 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  -oo  <  z )
29 supxrub 10659 . . . . . . . . . . 11  |-  ( ( A  C_  RR*  /\  z  e.  A )  ->  z  <_  sup ( A ,  RR* ,  <  ) )
307, 29sylan 457 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  z  <_  sup ( A ,  RR* ,  <  ) )
3123, 25, 26, 28, 30xrltletrd 10508 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  -oo  <  sup ( A ,  RR* ,  <  ) )
3231ex 423 . . . . . . . 8  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( z  e.  A  ->  -oo  <  sup ( A ,  RR* ,  <  ) ) )
3332exlimdv 1626 . . . . . . 7  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( E. z  z  e.  A  ->  -oo  <  sup ( A ,  RR* ,  <  ) ) )
3421, 33mpd 14 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  -oo  <  sup ( A ,  RR* ,  <  ) )
35 xrre 10514 . . . . . 6  |-  ( ( ( sup ( A ,  RR* ,  <  )  e.  RR*  /\  sup ( A ,  RR ,  <  )  e.  RR )  /\  (  -oo  <  sup ( A ,  RR* ,  <  )  /\  sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR ,  <  ) ) )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
3614, 1, 34, 12, 35syl22anc 1183 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR* ,  <  )  e.  RR )
37 suprleub 9734 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  sup ( A ,  RR* ,  <  )  e.  RR )  -> 
( sup ( A ,  RR ,  <  )  <_  sup ( A ,  RR* ,  <  )  <->  A. x  e.  A  x  <_  sup ( A ,  RR* ,  <  ) ) )
3836, 37mpdan 649 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR ,  <  )  <_  sup ( A ,  RR* ,  <  )  <->  A. x  e.  A  x  <_  sup ( A ,  RR* ,  <  ) ) )
3918, 38bitr4d 247 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR* ,  <  )  <->  sup ( A ,  RR ,  <  )  <_  sup ( A ,  RR* ,  <  ) ) )
4016, 39mpbid 201 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  <_  sup ( A ,  RR* ,  <  ) )
41 xrletri3 10502 . . 3  |-  ( ( sup ( A ,  RR* ,  <  )  e. 
RR*  /\  sup ( A ,  RR ,  <  )  e.  RR* )  ->  ( sup ( A ,  RR* ,  <  )  =  sup ( A ,  RR ,  <  )  <->  ( sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR ,  <  )  /\  sup ( A ,  RR ,  <  )  <_  sup ( A ,  RR* ,  <  ) ) ) )
4214, 8, 41syl2anc 642 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR* ,  <  )  =  sup ( A ,  RR ,  <  )  <-> 
( sup ( A ,  RR* ,  <  )  <_  sup ( A ,  RR ,  <  )  /\  sup ( A ,  RR ,  <  )  <_  sup ( A ,  RR* ,  <  ) ) ) )
4312, 40, 42mpbir2and 888 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR* ,  <  )  =  sup ( A ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165   (/)c0 3468   class class class wbr 4039   supcsup 7209   RRcr 8752    -oocmnf 8881   RR*cxr 8882    < clt 8883    <_ cle 8884
This theorem is referenced by:  supxrbnd  10663  ovoliunlem1  18877  ovoliun2  18881  ioombl1lem4  18934  uniioombllem2  18954  uniioombllem6  18959  itg1climres  19085  itg2monolem1  19121  itg2i1fseq2  19127  nmcexi  22622  itg2addnc  25005
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056
  Copyright terms: Public domain W3C validator