MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrun Structured version   Unicode version

Theorem supxrun 10899
Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrun  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  sup ( ( A  u.  B ) , 
RR* ,  <  )  =  sup ( B ,  RR* ,  <  ) )

Proof of Theorem supxrun
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 3523 . . . 4  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  <->  ( A  u.  B )  C_  RR* )
21biimpi 188 . . 3  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( A  u.  B )  C_ 
RR* )
323adant3 978 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( A  u.  B )  C_  RR* )
4 supxrcl 10898 . . 3  |-  ( B 
C_  RR*  ->  sup ( B ,  RR* ,  <  )  e.  RR* )
543ad2ant2 980 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  sup ( B ,  RR* ,  <  )  e. 
RR* )
6 elun 3490 . . . 4  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
7 xrltso 10739 . . . . . . . . 9  |-  <  Or  RR*
87a1i 11 . . . . . . . 8  |-  ( A 
C_  RR*  ->  <  Or  RR* )
9 xrsupss 10892 . . . . . . . 8  |-  ( A 
C_  RR*  ->  E. y  e.  RR*  ( A. z  e.  A  -.  y  <  z  /\  A. z  e.  RR*  ( z  < 
y  ->  E. w  e.  A  z  <  w ) ) )
108, 9supub 7467 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( x  e.  A  ->  -.  sup ( A ,  RR* ,  <  )  <  x ) )
11103ad2ant1 979 . . . . . 6  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( x  e.  A  ->  -.  sup ( A ,  RR* ,  <  )  <  x ) )
12 supxrcl 10898 . . . . . . . . . . . . 13  |-  ( A 
C_  RR*  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
1312ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR*  /\  B  C_ 
RR* )  /\  x  e.  A )  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
144ad2antlr 709 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR*  /\  B  C_ 
RR* )  /\  x  e.  A )  ->  sup ( B ,  RR* ,  <  )  e.  RR* )
15 ssel2 3345 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR*  /\  x  e.  A )  ->  x  e.  RR* )
1615adantlr 697 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR*  /\  B  C_ 
RR* )  /\  x  e.  A )  ->  x  e.  RR* )
17 xrlelttr 10751 . . . . . . . . . . . 12  |-  ( ( sup ( A ,  RR* ,  <  )  e. 
RR*  /\  sup ( B ,  RR* ,  <  )  e.  RR*  /\  x  e.  RR* )  ->  (
( sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  )  /\  sup ( B ,  RR* ,  <  )  <  x
)  ->  sup ( A ,  RR* ,  <  )  <  x ) )
1813, 14, 16, 17syl3anc 1185 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR*  /\  B  C_ 
RR* )  /\  x  e.  A )  ->  (
( sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  )  /\  sup ( B ,  RR* ,  <  )  <  x
)  ->  sup ( A ,  RR* ,  <  )  <  x ) )
1918expdimp 428 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR* 
/\  B  C_  RR* )  /\  x  e.  A
)  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( sup ( B ,  RR* ,  <  )  <  x  ->  sup ( A ,  RR* ,  <  )  <  x ) )
2019con3d 128 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR* 
/\  B  C_  RR* )  /\  x  e.  A
)  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( -.  sup ( A ,  RR* ,  <  )  <  x  ->  -.  sup ( B ,  RR* ,  <  )  <  x
) )
2120exp41 595 . . . . . . . 8  |-  ( A 
C_  RR*  ->  ( B  C_ 
RR*  ->  ( x  e.  A  ->  ( sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  )  -> 
( -.  sup ( A ,  RR* ,  <  )  <  x  ->  -.  sup ( B ,  RR* ,  <  )  <  x
) ) ) ) )
2221com34 80 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( B  C_ 
RR*  ->  ( sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  )  -> 
( x  e.  A  ->  ( -.  sup ( A ,  RR* ,  <  )  <  x  ->  -.  sup ( B ,  RR* ,  <  )  <  x
) ) ) ) )
23223imp 1148 . . . . . 6  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( x  e.  A  ->  ( -.  sup ( A ,  RR* ,  <  )  <  x  ->  -.  sup ( B ,  RR* ,  <  )  <  x ) ) )
2411, 23mpdd 39 . . . . 5  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( x  e.  A  ->  -.  sup ( B ,  RR* ,  <  )  <  x ) )
257a1i 11 . . . . . . 7  |-  ( B 
C_  RR*  ->  <  Or  RR* )
26 xrsupss 10892 . . . . . . 7  |-  ( B 
C_  RR*  ->  E. y  e.  RR*  ( A. z  e.  B  -.  y  <  z  /\  A. z  e.  RR*  ( z  < 
y  ->  E. w  e.  B  z  <  w ) ) )
2725, 26supub 7467 . . . . . 6  |-  ( B 
C_  RR*  ->  ( x  e.  B  ->  -.  sup ( B ,  RR* ,  <  )  <  x ) )
28273ad2ant2 980 . . . . 5  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( x  e.  B  ->  -.  sup ( B ,  RR* ,  <  )  <  x ) )
2924, 28jaod 371 . . . 4  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( ( x  e.  A  \/  x  e.  B )  ->  -.  sup ( B ,  RR* ,  <  )  <  x
) )
306, 29syl5bi 210 . . 3  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( x  e.  ( A  u.  B
)  ->  -.  sup ( B ,  RR* ,  <  )  <  x ) )
3130ralrimiv 2790 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  A. x  e.  ( A  u.  B )  -.  sup ( B ,  RR* ,  <  )  <  x )
32 rexr 9135 . . . . . . 7  |-  ( x  e.  RR  ->  x  e.  RR* )
33 xrsupss 10892 . . . . . . . 8  |-  ( B 
C_  RR*  ->  E. x  e.  RR*  ( A. z  e.  B  -.  x  <  z  /\  A. z  e.  RR*  ( z  < 
x  ->  E. y  e.  B  z  <  y ) ) )
3425, 33suplub 7468 . . . . . . 7  |-  ( B 
C_  RR*  ->  ( (
x  e.  RR*  /\  x  <  sup ( B ,  RR* ,  <  ) )  ->  E. y  e.  B  x  <  y ) )
3532, 34sylani 637 . . . . . 6  |-  ( B 
C_  RR*  ->  ( (
x  e.  RR  /\  x  <  sup ( B ,  RR* ,  <  ) )  ->  E. y  e.  B  x  <  y ) )
36 elun2 3517 . . . . . . . 8  |-  ( y  e.  B  ->  y  e.  ( A  u.  B
) )
3736anim1i 553 . . . . . . 7  |-  ( ( y  e.  B  /\  x  <  y )  -> 
( y  e.  ( A  u.  B )  /\  x  <  y
) )
3837reximi2 2814 . . . . . 6  |-  ( E. y  e.  B  x  <  y  ->  E. y  e.  ( A  u.  B
) x  <  y
)
3935, 38syl6 32 . . . . 5  |-  ( B 
C_  RR*  ->  ( (
x  e.  RR  /\  x  <  sup ( B ,  RR* ,  <  ) )  ->  E. y  e.  ( A  u.  B ) x  <  y ) )
4039exp3a 427 . . . 4  |-  ( B 
C_  RR*  ->  ( x  e.  RR  ->  ( x  <  sup ( B ,  RR* ,  <  )  ->  E. y  e.  ( A  u.  B )
x  <  y )
) )
4140ralrimiv 2790 . . 3  |-  ( B 
C_  RR*  ->  A. x  e.  RR  ( x  <  sup ( B ,  RR* ,  <  )  ->  E. y  e.  ( A  u.  B
) x  <  y
) )
42413ad2ant2 980 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  A. x  e.  RR  ( x  <  sup ( B ,  RR* ,  <  )  ->  E. y  e.  ( A  u.  B ) x  <  y ) )
43 supxr 10896 . 2  |-  ( ( ( ( A  u.  B )  C_  RR*  /\  sup ( B ,  RR* ,  <  )  e.  RR* )  /\  ( A. x  e.  ( A  u.  B )  -.  sup ( B ,  RR* ,  <  )  < 
x  /\  A. x  e.  RR  ( x  <  sup ( B ,  RR* ,  <  )  ->  E. y  e.  ( A  u.  B
) x  <  y
) ) )  ->  sup ( ( A  u.  B ) ,  RR* ,  <  )  =  sup ( B ,  RR* ,  <  ) )
443, 5, 31, 42, 43syl22anc 1186 1  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  sup ( ( A  u.  B ) , 
RR* ,  <  )  =  sup ( B ,  RR* ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    u. cun 3320    C_ wss 3322   class class class wbr 4215    Or wor 4505   supcsup 7448   RRcr 8994   RR*cxr 9124    < clt 9125    <_ cle 9126
This theorem is referenced by:  supxrmnf  10901  xpsdsval  18416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-po 4506  df-so 4507  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299
  Copyright terms: Public domain W3C validator