MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrunb1 Structured version   Unicode version

Theorem supxrunb1 10890
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrunb1  |-  ( A 
C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  <->  sup ( A ,  RR* ,  <  )  =  +oo ) )
Distinct variable group:    x, y, A

Proof of Theorem supxrunb1
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3334 . . . . . . . 8  |-  ( A 
C_  RR*  ->  ( z  e.  A  ->  z  e. 
RR* ) )
2 pnfnlt 10717 . . . . . . . 8  |-  ( z  e.  RR*  ->  -.  +oo  <  z )
31, 2syl6 31 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( z  e.  A  ->  -.  +oo  <  z ) )
43ralrimiv 2780 . . . . . 6  |-  ( A 
C_  RR*  ->  A. z  e.  A  -.  +oo  <  z )
54adantr 452 . . . . 5  |-  ( ( A  C_  RR*  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  A. z  e.  A  -.  +oo  <  z )
6 peano2re 9231 . . . . . . . . . . . . 13  |-  ( z  e.  RR  ->  (
z  +  1 )  e.  RR )
7 breq1 4207 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( z  +  1 )  ->  (
x  <_  y  <->  ( z  +  1 )  <_ 
y ) )
87rexbidv 2718 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( z  +  1 )  ->  ( E. y  e.  A  x  <_  y  <->  E. y  e.  A  ( z  +  1 )  <_ 
y ) )
98rspcva 3042 . . . . . . . . . . . . . . 15  |-  ( ( ( z  +  1 )  e.  RR  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  E. y  e.  A  ( z  +  1 )  <_ 
y )
109adantrr 698 . . . . . . . . . . . . . 14  |-  ( ( ( z  +  1 )  e.  RR  /\  ( A. x  e.  RR  E. y  e.  A  x  <_  y  /\  A  C_ 
RR* ) )  ->  E. y  e.  A  ( z  +  1 )  <_  y )
1110ancoms 440 . . . . . . . . . . . . 13  |-  ( ( ( A. x  e.  RR  E. y  e.  A  x  <_  y  /\  A  C_  RR* )  /\  ( z  +  1 )  e.  RR )  ->  E. y  e.  A  ( z  +  1 )  <_  y )
126, 11sylan2 461 . . . . . . . . . . . 12  |-  ( ( ( A. x  e.  RR  E. y  e.  A  x  <_  y  /\  A  C_  RR* )  /\  z  e.  RR )  ->  E. y  e.  A  ( z  +  1 )  <_  y )
13 ssel2 3335 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  RR*  /\  y  e.  A )  ->  y  e.  RR* )
14 ltp1 9840 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  RR  ->  z  <  ( z  +  1 ) )
1514adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  RR  /\  y  e.  RR* )  -> 
z  <  ( z  +  1 ) )
166ancli 535 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  RR  ->  (
z  e.  RR  /\  ( z  +  1 )  e.  RR ) )
17 rexr 9122 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  RR  ->  z  e.  RR* )
18 rexr 9122 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  +  1 )  e.  RR  ->  (
z  +  1 )  e.  RR* )
19 xrltletr 10739 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  RR*  /\  (
z  +  1 )  e.  RR*  /\  y  e.  RR* )  ->  (
( z  <  (
z  +  1 )  /\  ( z  +  1 )  <_  y
)  ->  z  <  y ) )
2018, 19syl3an2 1218 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  RR*  /\  (
z  +  1 )  e.  RR  /\  y  e.  RR* )  ->  (
( z  <  (
z  +  1 )  /\  ( z  +  1 )  <_  y
)  ->  z  <  y ) )
2117, 20syl3an1 1217 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  RR  /\  ( z  +  1 )  e.  RR  /\  y  e.  RR* )  -> 
( ( z  < 
( z  +  1 )  /\  ( z  +  1 )  <_ 
y )  ->  z  <  y ) )
22213expa 1153 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  RR  /\  ( z  +  1 )  e.  RR )  /\  y  e.  RR* )  ->  ( ( z  <  ( z  +  1 )  /\  (
z  +  1 )  <_  y )  -> 
z  <  y )
)
2316, 22sylan 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  RR  /\  y  e.  RR* )  -> 
( ( z  < 
( z  +  1 )  /\  ( z  +  1 )  <_ 
y )  ->  z  <  y ) )
2415, 23mpand 657 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  RR  /\  y  e.  RR* )  -> 
( ( z  +  1 )  <_  y  ->  z  <  y ) )
2524ancoms 440 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR*  /\  z  e.  RR )  ->  (
( z  +  1 )  <_  y  ->  z  <  y ) )
2613, 25sylan 458 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  RR*  /\  y  e.  A )  /\  z  e.  RR )  ->  (
( z  +  1 )  <_  y  ->  z  <  y ) )
2726an32s 780 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  RR*  /\  z  e.  RR )  /\  y  e.  A )  ->  (
( z  +  1 )  <_  y  ->  z  <  y ) )
2827reximdva 2810 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR*  /\  z  e.  RR )  ->  ( E. y  e.  A  ( z  +  1 )  <_  y  ->  E. y  e.  A  z  <  y ) )
2928adantll 695 . . . . . . . . . . . 12  |-  ( ( ( A. x  e.  RR  E. y  e.  A  x  <_  y  /\  A  C_  RR* )  /\  z  e.  RR )  ->  ( E. y  e.  A  ( z  +  1 )  <_ 
y  ->  E. y  e.  A  z  <  y ) )
3012, 29mpd 15 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  RR  E. y  e.  A  x  <_  y  /\  A  C_  RR* )  /\  z  e.  RR )  ->  E. y  e.  A  z  <  y )
3130exp31 588 . . . . . . . . . 10  |-  ( A. x  e.  RR  E. y  e.  A  x  <_  y  ->  ( A  C_  RR* 
->  ( z  e.  RR  ->  E. y  e.  A  z  <  y ) ) )
3231a1dd 44 . . . . . . . . 9  |-  ( A. x  e.  RR  E. y  e.  A  x  <_  y  ->  ( A  C_  RR* 
->  ( z  <  +oo  ->  ( z  e.  RR  ->  E. y  e.  A  z  <  y ) ) ) )
3332com4r 82 . . . . . . . 8  |-  ( z  e.  RR  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  ->  ( A  C_  RR*  ->  ( z  <  +oo  ->  E. y  e.  A  z  <  y ) ) ) )
3433com13 76 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  ->  ( z  e.  RR  ->  ( z  <  +oo  ->  E. y  e.  A  z  <  y ) ) ) )
3534imp 419 . . . . . 6  |-  ( ( A  C_  RR*  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  ( z  e.  RR  ->  ( z  <  +oo  ->  E. y  e.  A  z  <  y ) ) )
3635ralrimiv 2780 . . . . 5  |-  ( ( A  C_  RR*  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  A. z  e.  RR  ( z  <  +oo  ->  E. y  e.  A  z  <  y ) )
375, 36jca 519 . . . 4  |-  ( ( A  C_  RR*  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  ( A. z  e.  A  -.  +oo 
<  z  /\  A. z  e.  RR  ( z  <  +oo  ->  E. y  e.  A  z  <  y ) ) )
38 pnfxr 10705 . . . . 5  |-  +oo  e.  RR*
39 supxr 10883 . . . . 5  |-  ( ( ( A  C_  RR*  /\  +oo  e.  RR* )  /\  ( A. z  e.  A  -.  +oo  <  z  /\  A. z  e.  RR  (
z  <  +oo  ->  E. y  e.  A  z  <  y ) ) )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
4038, 39mpanl2 663 . . . 4  |-  ( ( A  C_  RR*  /\  ( A. z  e.  A  -.  +oo  <  z  /\  A. z  e.  RR  (
z  <  +oo  ->  E. y  e.  A  z  <  y ) ) )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
4137, 40syldan 457 . . 3  |-  ( ( A  C_  RR*  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
4241ex 424 . 2  |-  ( A 
C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  ->  sup ( A ,  RR* ,  <  )  = 
+oo ) )
43 rexr 9122 . . . . . . 7  |-  ( x  e.  RR  ->  x  e.  RR* )
4443ad2antlr 708 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  x  e.  RR* )
45 ltpnf 10713 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  <  +oo )
46 breq2 4208 . . . . . . . . 9  |-  ( sup ( A ,  RR* ,  <  )  =  +oo  ->  ( x  <  sup ( A ,  RR* ,  <  )  <-> 
x  <  +oo ) )
4745, 46syl5ibr 213 . . . . . . . 8  |-  ( sup ( A ,  RR* ,  <  )  =  +oo  ->  ( x  e.  RR  ->  x  <  sup ( A ,  RR* ,  <  ) ) )
4847impcom 420 . . . . . . 7  |-  ( ( x  e.  RR  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  x  <  sup ( A ,  RR* ,  <  ) )
4948adantll 695 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  x  <  sup ( A ,  RR* ,  <  ) )
50 xrltso 10726 . . . . . . . 8  |-  <  Or  RR*
5150a1i 11 . . . . . . 7  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  <  Or  RR* )
52 xrsupss 10879 . . . . . . . 8  |-  ( A 
C_  RR*  ->  E. z  e.  RR*  ( A. w  e.  A  -.  z  <  w  /\  A. w  e.  RR*  ( w  < 
z  ->  E. y  e.  A  w  <  y ) ) )
5352ad2antrr 707 . . . . . . 7  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  E. z  e.  RR*  ( A. w  e.  A  -.  z  <  w  /\  A. w  e.  RR*  (
w  <  z  ->  E. y  e.  A  w  <  y ) ) )
5451, 53suplub 7457 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  -> 
( ( x  e. 
RR*  /\  x  <  sup ( A ,  RR* ,  <  ) )  ->  E. y  e.  A  x  <  y ) )
5544, 49, 54mp2and 661 . . . . 5  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  E. y  e.  A  x  <  y )
5655ex 424 . . . 4  |-  ( ( A  C_  RR*  /\  x  e.  RR )  ->  ( sup ( A ,  RR* ,  <  )  =  +oo  ->  E. y  e.  A  x  <  y ) )
5743ad2antlr 708 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  y  e.  A )  ->  x  e.  RR* )
5813adantlr 696 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  y  e.  A )  ->  y  e.  RR* )
59 xrltle 10734 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <  y  ->  x  <_  y ) )
6057, 58, 59syl2anc 643 . . . . 5  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  y  e.  A )  ->  (
x  <  y  ->  x  <_  y ) )
6160reximdva 2810 . . . 4  |-  ( ( A  C_  RR*  /\  x  e.  RR )  ->  ( E. y  e.  A  x  <  y  ->  E. y  e.  A  x  <_  y ) )
6256, 61syld 42 . . 3  |-  ( ( A  C_  RR*  /\  x  e.  RR )  ->  ( sup ( A ,  RR* ,  <  )  =  +oo  ->  E. y  e.  A  x  <_  y ) )
6362ralrimdva 2788 . 2  |-  ( A 
C_  RR*  ->  ( sup ( A ,  RR* ,  <  )  =  +oo  ->  A. x  e.  RR  E. y  e.  A  x  <_  y
) )
6442, 63impbid 184 1  |-  ( A 
C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  <->  sup ( A ,  RR* ,  <  )  =  +oo ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   class class class wbr 4204    Or wor 4494  (class class class)co 6073   supcsup 7437   RRcr 8981   1c1 8983    + caddc 8985    +oocpnf 9109   RR*cxr 9111    < clt 9112    <_ cle 9113
This theorem is referenced by:  supxrbnd1  10892  uzsup  11236  limsupval2  12266  limsupbnd2  12269  rlimuni  12336  rlimcld2  12364  rlimno1  12439  esumcvg  24468
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286
  Copyright terms: Public domain W3C validator