MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrunb1 Unicode version

Theorem supxrunb1 10638
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrunb1  |-  ( A 
C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  <->  sup ( A ,  RR* ,  <  )  =  +oo ) )
Distinct variable group:    x, y, A

Proof of Theorem supxrunb1
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3174 . . . . . . . 8  |-  ( A 
C_  RR*  ->  ( z  e.  A  ->  z  e. 
RR* ) )
2 pnfnlt 10467 . . . . . . . 8  |-  ( z  e.  RR*  ->  -.  +oo  <  z )
31, 2syl6 29 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( z  e.  A  ->  -.  +oo  <  z ) )
43ralrimiv 2625 . . . . . 6  |-  ( A 
C_  RR*  ->  A. z  e.  A  -.  +oo  <  z )
54adantr 451 . . . . 5  |-  ( ( A  C_  RR*  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  A. z  e.  A  -.  +oo  <  z )
6 peano2re 8985 . . . . . . . . . . . . 13  |-  ( z  e.  RR  ->  (
z  +  1 )  e.  RR )
7 breq1 4026 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( z  +  1 )  ->  (
x  <_  y  <->  ( z  +  1 )  <_ 
y ) )
87rexbidv 2564 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( z  +  1 )  ->  ( E. y  e.  A  x  <_  y  <->  E. y  e.  A  ( z  +  1 )  <_ 
y ) )
98rspcva 2882 . . . . . . . . . . . . . . 15  |-  ( ( ( z  +  1 )  e.  RR  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  E. y  e.  A  ( z  +  1 )  <_ 
y )
109adantrr 697 . . . . . . . . . . . . . 14  |-  ( ( ( z  +  1 )  e.  RR  /\  ( A. x  e.  RR  E. y  e.  A  x  <_  y  /\  A  C_ 
RR* ) )  ->  E. y  e.  A  ( z  +  1 )  <_  y )
1110ancoms 439 . . . . . . . . . . . . 13  |-  ( ( ( A. x  e.  RR  E. y  e.  A  x  <_  y  /\  A  C_  RR* )  /\  ( z  +  1 )  e.  RR )  ->  E. y  e.  A  ( z  +  1 )  <_  y )
126, 11sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( A. x  e.  RR  E. y  e.  A  x  <_  y  /\  A  C_  RR* )  /\  z  e.  RR )  ->  E. y  e.  A  ( z  +  1 )  <_  y )
13 ssel2 3175 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  RR*  /\  y  e.  A )  ->  y  e.  RR* )
14 ltp1 9594 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  RR  ->  z  <  ( z  +  1 ) )
1514adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  RR  /\  y  e.  RR* )  -> 
z  <  ( z  +  1 ) )
166ancli 534 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  RR  ->  (
z  e.  RR  /\  ( z  +  1 )  e.  RR ) )
17 rexr 8877 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  RR  ->  z  e.  RR* )
18 rexr 8877 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  +  1 )  e.  RR  ->  (
z  +  1 )  e.  RR* )
19 xrltletr 10488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  RR*  /\  (
z  +  1 )  e.  RR*  /\  y  e.  RR* )  ->  (
( z  <  (
z  +  1 )  /\  ( z  +  1 )  <_  y
)  ->  z  <  y ) )
2018, 19syl3an2 1216 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  RR*  /\  (
z  +  1 )  e.  RR  /\  y  e.  RR* )  ->  (
( z  <  (
z  +  1 )  /\  ( z  +  1 )  <_  y
)  ->  z  <  y ) )
2117, 20syl3an1 1215 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  RR  /\  ( z  +  1 )  e.  RR  /\  y  e.  RR* )  -> 
( ( z  < 
( z  +  1 )  /\  ( z  +  1 )  <_ 
y )  ->  z  <  y ) )
22213expa 1151 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  RR  /\  ( z  +  1 )  e.  RR )  /\  y  e.  RR* )  ->  ( ( z  <  ( z  +  1 )  /\  (
z  +  1 )  <_  y )  -> 
z  <  y )
)
2316, 22sylan 457 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  RR  /\  y  e.  RR* )  -> 
( ( z  < 
( z  +  1 )  /\  ( z  +  1 )  <_ 
y )  ->  z  <  y ) )
2415, 23mpand 656 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  RR  /\  y  e.  RR* )  -> 
( ( z  +  1 )  <_  y  ->  z  <  y ) )
2524ancoms 439 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR*  /\  z  e.  RR )  ->  (
( z  +  1 )  <_  y  ->  z  <  y ) )
2613, 25sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  RR*  /\  y  e.  A )  /\  z  e.  RR )  ->  (
( z  +  1 )  <_  y  ->  z  <  y ) )
2726an32s 779 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  RR*  /\  z  e.  RR )  /\  y  e.  A )  ->  (
( z  +  1 )  <_  y  ->  z  <  y ) )
2827reximdva 2655 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR*  /\  z  e.  RR )  ->  ( E. y  e.  A  ( z  +  1 )  <_  y  ->  E. y  e.  A  z  <  y ) )
2928adantll 694 . . . . . . . . . . . 12  |-  ( ( ( A. x  e.  RR  E. y  e.  A  x  <_  y  /\  A  C_  RR* )  /\  z  e.  RR )  ->  ( E. y  e.  A  ( z  +  1 )  <_ 
y  ->  E. y  e.  A  z  <  y ) )
3012, 29mpd 14 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  RR  E. y  e.  A  x  <_  y  /\  A  C_  RR* )  /\  z  e.  RR )  ->  E. y  e.  A  z  <  y )
3130exp31 587 . . . . . . . . . 10  |-  ( A. x  e.  RR  E. y  e.  A  x  <_  y  ->  ( A  C_  RR* 
->  ( z  e.  RR  ->  E. y  e.  A  z  <  y ) ) )
3231a1dd 42 . . . . . . . . 9  |-  ( A. x  e.  RR  E. y  e.  A  x  <_  y  ->  ( A  C_  RR* 
->  ( z  <  +oo  ->  ( z  e.  RR  ->  E. y  e.  A  z  <  y ) ) ) )
3332com4r 80 . . . . . . . 8  |-  ( z  e.  RR  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  ->  ( A  C_  RR*  ->  ( z  <  +oo  ->  E. y  e.  A  z  <  y ) ) ) )
3433com13 74 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  ->  ( z  e.  RR  ->  ( z  <  +oo  ->  E. y  e.  A  z  <  y ) ) ) )
3534imp 418 . . . . . 6  |-  ( ( A  C_  RR*  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  ( z  e.  RR  ->  ( z  <  +oo  ->  E. y  e.  A  z  <  y ) ) )
3635ralrimiv 2625 . . . . 5  |-  ( ( A  C_  RR*  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  A. z  e.  RR  ( z  <  +oo  ->  E. y  e.  A  z  <  y ) )
375, 36jca 518 . . . 4  |-  ( ( A  C_  RR*  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  ( A. z  e.  A  -.  +oo 
<  z  /\  A. z  e.  RR  ( z  <  +oo  ->  E. y  e.  A  z  <  y ) ) )
38 pnfxr 10455 . . . . 5  |-  +oo  e.  RR*
39 supxr 10631 . . . . 5  |-  ( ( ( A  C_  RR*  /\  +oo  e.  RR* )  /\  ( A. z  e.  A  -.  +oo  <  z  /\  A. z  e.  RR  (
z  <  +oo  ->  E. y  e.  A  z  <  y ) ) )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
4038, 39mpanl2 662 . . . 4  |-  ( ( A  C_  RR*  /\  ( A. z  e.  A  -.  +oo  <  z  /\  A. z  e.  RR  (
z  <  +oo  ->  E. y  e.  A  z  <  y ) ) )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
4137, 40syldan 456 . . 3  |-  ( ( A  C_  RR*  /\  A. x  e.  RR  E. y  e.  A  x  <_  y )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
4241ex 423 . 2  |-  ( A 
C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  ->  sup ( A ,  RR* ,  <  )  = 
+oo ) )
43 rexr 8877 . . . . . . 7  |-  ( x  e.  RR  ->  x  e.  RR* )
4443ad2antlr 707 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  x  e.  RR* )
45 ltpnf 10463 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  <  +oo )
46 breq2 4027 . . . . . . . . 9  |-  ( sup ( A ,  RR* ,  <  )  =  +oo  ->  ( x  <  sup ( A ,  RR* ,  <  )  <-> 
x  <  +oo ) )
4745, 46syl5ibr 212 . . . . . . . 8  |-  ( sup ( A ,  RR* ,  <  )  =  +oo  ->  ( x  e.  RR  ->  x  <  sup ( A ,  RR* ,  <  ) ) )
4847impcom 419 . . . . . . 7  |-  ( ( x  e.  RR  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  x  <  sup ( A ,  RR* ,  <  ) )
4948adantll 694 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  x  <  sup ( A ,  RR* ,  <  ) )
50 xrltso 10475 . . . . . . . 8  |-  <  Or  RR*
5150a1i 10 . . . . . . 7  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  <  Or  RR* )
52 xrsupss 10627 . . . . . . . 8  |-  ( A 
C_  RR*  ->  E. z  e.  RR*  ( A. w  e.  A  -.  z  <  w  /\  A. w  e.  RR*  ( w  < 
z  ->  E. y  e.  A  w  <  y ) ) )
5352ad2antrr 706 . . . . . . 7  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  E. z  e.  RR*  ( A. w  e.  A  -.  z  <  w  /\  A. w  e.  RR*  (
w  <  z  ->  E. y  e.  A  w  <  y ) ) )
5451, 53suplub 7211 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  -> 
( ( x  e. 
RR*  /\  x  <  sup ( A ,  RR* ,  <  ) )  ->  E. y  e.  A  x  <  y ) )
5544, 49, 54mp2and 660 . . . . 5  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  sup ( A ,  RR* ,  <  )  =  +oo )  ->  E. y  e.  A  x  <  y )
5655ex 423 . . . 4  |-  ( ( A  C_  RR*  /\  x  e.  RR )  ->  ( sup ( A ,  RR* ,  <  )  =  +oo  ->  E. y  e.  A  x  <  y ) )
5743ad2antlr 707 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  y  e.  A )  ->  x  e.  RR* )
5813adantlr 695 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  y  e.  A )  ->  y  e.  RR* )
59 xrltle 10483 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <  y  ->  x  <_  y ) )
6057, 58, 59syl2anc 642 . . . . 5  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  y  e.  A )  ->  (
x  <  y  ->  x  <_  y ) )
6160reximdva 2655 . . . 4  |-  ( ( A  C_  RR*  /\  x  e.  RR )  ->  ( E. y  e.  A  x  <  y  ->  E. y  e.  A  x  <_  y ) )
6256, 61syld 40 . . 3  |-  ( ( A  C_  RR*  /\  x  e.  RR )  ->  ( sup ( A ,  RR* ,  <  )  =  +oo  ->  E. y  e.  A  x  <_  y ) )
6362ralrimdva 2633 . 2  |-  ( A 
C_  RR*  ->  ( sup ( A ,  RR* ,  <  )  =  +oo  ->  A. x  e.  RR  E. y  e.  A  x  <_  y
) )
6442, 63impbid 183 1  |-  ( A 
C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  <->  sup ( A ,  RR* ,  <  )  =  +oo ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    Or wor 4313  (class class class)co 5858   supcsup 7193   RRcr 8736   1c1 8738    + caddc 8740    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868
This theorem is referenced by:  supxrbnd1  10640  uzsup  10967  limsupval2  11954  limsupbnd2  11957  rlimuni  12024  rlimcld2  12052  rlimno1  12127  esumcvg  23454
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040
  Copyright terms: Public domain W3C validator