MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swoord2 Unicode version

Theorem swoord2 6894
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypotheses
Ref Expression
swoer.1  |-  R  =  ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
)
swoer.2  |-  ( (
ph  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y  .<  z  ->  -.  z  .<  y
) )
swoer.3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x  .<  y  ->  ( x  .<  z  \/  z  .<  y ) ) )
swoord.4  |-  ( ph  ->  B  e.  X )
swoord.5  |-  ( ph  ->  C  e.  X )
swoord.6  |-  ( ph  ->  A R B )
Assertion
Ref Expression
swoord2  |-  ( ph  ->  ( C  .<  A  <->  C  .<  B ) )
Distinct variable groups:    x, y,
z,  .<    x, A, y, z   
x, B, y, z   
x, C, y, z    ph, x, y, z    x, X, y, z
Allowed substitution hints:    R( x, y, z)

Proof of Theorem swoord2
StepHypRef Expression
1 id 20 . . . 4  |-  ( ph  ->  ph )
2 swoord.5 . . . 4  |-  ( ph  ->  C  e.  X )
3 swoord.6 . . . . 5  |-  ( ph  ->  A R B )
4 swoer.1 . . . . . . 7  |-  R  =  ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
)
5 difss 3434 . . . . . . 7  |-  ( ( X  X.  X ) 
\  (  .<  u.  `'  .<  ) )  C_  ( X  X.  X )
64, 5eqsstri 3338 . . . . . 6  |-  R  C_  ( X  X.  X
)
76ssbri 4214 . . . . 5  |-  ( A R B  ->  A
( X  X.  X
) B )
8 df-br 4173 . . . . . 6  |-  ( A ( X  X.  X
) B  <->  <. A ,  B >.  e.  ( X  X.  X ) )
9 opelxp1 4870 . . . . . 6  |-  ( <. A ,  B >.  e.  ( X  X.  X
)  ->  A  e.  X )
108, 9sylbi 188 . . . . 5  |-  ( A ( X  X.  X
) B  ->  A  e.  X )
113, 7, 103syl 19 . . . 4  |-  ( ph  ->  A  e.  X )
12 swoord.4 . . . 4  |-  ( ph  ->  B  e.  X )
13 swoer.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x  .<  y  ->  ( x  .<  z  \/  z  .<  y ) ) )
1413swopolem 4472 . . . 4  |-  ( (
ph  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( C  .<  A  -> 
( C  .<  B  \/  B  .<  A ) ) )
151, 2, 11, 12, 14syl13anc 1186 . . 3  |-  ( ph  ->  ( C  .<  A  -> 
( C  .<  B  \/  B  .<  A ) ) )
16 idd 22 . . . 4  |-  ( ph  ->  ( C  .<  B  ->  C  .<  B ) )
174brdifun 6891 . . . . . . . 8  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B  <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
1811, 12, 17syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( A R B  <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
193, 18mpbid 202 . . . . . 6  |-  ( ph  ->  -.  ( A  .<  B  \/  B  .<  A ) )
20 olc 374 . . . . . 6  |-  ( B 
.<  A  ->  ( A 
.<  B  \/  B  .<  A ) )
2119, 20nsyl 115 . . . . 5  |-  ( ph  ->  -.  B  .<  A )
2221pm2.21d 100 . . . 4  |-  ( ph  ->  ( B  .<  A  ->  C  .<  B ) )
2316, 22jaod 370 . . 3  |-  ( ph  ->  ( ( C  .<  B  \/  B  .<  A )  ->  C  .<  B ) )
2415, 23syld 42 . 2  |-  ( ph  ->  ( C  .<  A  ->  C  .<  B ) )
2513swopolem 4472 . . . 4  |-  ( (
ph  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X ) )  -> 
( C  .<  B  -> 
( C  .<  A  \/  A  .<  B ) ) )
261, 2, 12, 11, 25syl13anc 1186 . . 3  |-  ( ph  ->  ( C  .<  B  -> 
( C  .<  A  \/  A  .<  B ) ) )
27 idd 22 . . . 4  |-  ( ph  ->  ( C  .<  A  ->  C  .<  A ) )
28 orc 375 . . . . . 6  |-  ( A 
.<  B  ->  ( A 
.<  B  \/  B  .<  A ) )
2919, 28nsyl 115 . . . . 5  |-  ( ph  ->  -.  A  .<  B )
3029pm2.21d 100 . . . 4  |-  ( ph  ->  ( A  .<  B  ->  C  .<  A ) )
3127, 30jaod 370 . . 3  |-  ( ph  ->  ( ( C  .<  A  \/  A  .<  B )  ->  C  .<  A ) )
3226, 31syld 42 . 2  |-  ( ph  ->  ( C  .<  B  ->  C  .<  A ) )
3324, 32impbid 184 1  |-  ( ph  ->  ( C  .<  A  <->  C  .<  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    \ cdif 3277    u. cun 3278   <.cop 3777   class class class wbr 4172    X. cxp 4835   `'ccnv 4836
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-xp 4843  df-cnv 4845
  Copyright terms: Public domain W3C validator