MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swopolem Structured version   Unicode version

Theorem swopolem 4515
Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
swopolem.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
Assertion
Ref Expression
swopolem  |-  ( (
ph  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A ) )  -> 
( X R Y  ->  ( X R Z  \/  Z R Y ) ) )
Distinct variable groups:    x, y,
z, A    ph, x, y, z    x, R, y, z    x, X, y, z    y, Y, z   
z, Z
Allowed substitution hints:    Y( x)    Z( x, y)

Proof of Theorem swopolem
StepHypRef Expression
1 swopolem.1 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
21ralrimivvva 2801 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) )
3 breq1 4218 . . . 4  |-  ( x  =  X  ->  (
x R y  <->  X R
y ) )
4 breq1 4218 . . . . 5  |-  ( x  =  X  ->  (
x R z  <->  X R
z ) )
54orbi1d 685 . . . 4  |-  ( x  =  X  ->  (
( x R z  \/  z R y )  <->  ( X R z  \/  z R y ) ) )
63, 5imbi12d 313 . . 3  |-  ( x  =  X  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( X R y  ->  ( X R z  \/  z R y ) ) ) )
7 breq2 4219 . . . 4  |-  ( y  =  Y  ->  ( X R y  <->  X R Y ) )
8 breq2 4219 . . . . 5  |-  ( y  =  Y  ->  (
z R y  <->  z R Y ) )
98orbi2d 684 . . . 4  |-  ( y  =  Y  ->  (
( X R z  \/  z R y )  <->  ( X R z  \/  z R Y ) ) )
107, 9imbi12d 313 . . 3  |-  ( y  =  Y  ->  (
( X R y  ->  ( X R z  \/  z R y ) )  <->  ( X R Y  ->  ( X R z  \/  z R Y ) ) ) )
11 breq2 4219 . . . . 5  |-  ( z  =  Z  ->  ( X R z  <->  X R Z ) )
12 breq1 4218 . . . . 5  |-  ( z  =  Z  ->  (
z R Y  <->  Z R Y ) )
1311, 12orbi12d 692 . . . 4  |-  ( z  =  Z  ->  (
( X R z  \/  z R Y )  <->  ( X R Z  \/  Z R Y ) ) )
1413imbi2d 309 . . 3  |-  ( z  =  Z  ->  (
( X R Y  ->  ( X R z  \/  z R Y ) )  <->  ( X R Y  ->  ( X R Z  \/  Z R Y ) ) ) )
156, 10, 14rspc3v 3063 . 2  |-  ( ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) )  ->  ( X R Y  ->  ( X R Z  \/  Z R Y ) ) ) )
162, 15mpan9 457 1  |-  ( (
ph  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A ) )  -> 
( X R Y  ->  ( X R Z  \/  Z R Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   class class class wbr 4215
This theorem is referenced by:  swoer  6936  swoord1  6937  swoord2  6938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216
  Copyright terms: Public domain W3C validator