MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdcl Unicode version

Theorem swrdcl 11725
Description: Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrdcl  |-  ( S  e. Word  A  ->  ( S substr  <. F ,  L >. )  e. Word  A )

Proof of Theorem swrdcl
Dummy variables  s 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2468 . 2  |-  ( ( S substr  <. F ,  L >. )  =  (/)  ->  (
( S substr  <. F ,  L >. )  e. Word  A  <->  (/)  e. Word  A ) )
2 n0 3601 . . . 4  |-  ( ( S substr  <. F ,  L >. )  =/=  (/)  <->  E. x  x  e.  ( S substr  <. F ,  L >. ) )
3 df-substr 11685 . . . . . . 7  |- substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) ) )
43elmpt2cl2 6253 . . . . . 6  |-  ( x  e.  ( S substr  <. F ,  L >. )  ->  <. F ,  L >.  e.  ( ZZ 
X.  ZZ ) )
5 opelxp 4871 . . . . . 6  |-  ( <. F ,  L >.  e.  ( ZZ  X.  ZZ ) 
<->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
64, 5sylib 189 . . . . 5  |-  ( x  e.  ( S substr  <. F ,  L >. )  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
76exlimiv 1641 . . . 4  |-  ( E. x  x  e.  ( S substr  <. F ,  L >. )  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
82, 7sylbi 188 . . 3  |-  ( ( S substr  <. F ,  L >. )  =/=  (/)  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
9 swrdval 11723 . . . . 5  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  =  if ( ( F..^ L ) 
C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) ) )
10 wrdf 11692 . . . . . . . . . . 11  |-  ( S  e. Word  A  ->  S : ( 0..^ (
# `  S )
) --> A )
11103ad2ant1 978 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  S : ( 0..^ (
# `  S )
) --> A )
1211ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  S : ( 0..^ ( # `  S
) ) --> A )
13 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( F..^ L
)  C_  dom  S )
14 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  x  e.  ( 0..^ ( L  -  F ) ) )
15 simpll3 998 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  L  e.  ZZ )
16 simpll2 997 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  F  e.  ZZ )
17 fzoaddel2 11135 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ ( L  -  F
) )  /\  L  e.  ZZ  /\  F  e.  ZZ )  ->  (
x  +  F )  e.  ( F..^ L
) )
1814, 15, 16, 17syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  ( F..^ L ) )
1913, 18sseldd 3313 . . . . . . . . . 10  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  dom  S )
20 fdm 5558 . . . . . . . . . . 11  |-  ( S : ( 0..^ (
# `  S )
) --> A  ->  dom  S  =  ( 0..^ (
# `  S )
) )
2112, 20syl 16 . . . . . . . . . 10  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  dom  S  =  ( 0..^ ( # `  S
) ) )
2219, 21eleqtrd 2484 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  ( 0..^ ( # `  S
) ) )
2312, 22ffvelrnd 5834 . . . . . . . 8  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( S `  ( x  +  F
) )  e.  A
)
24 eqid 2408 . . . . . . . 8  |-  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F
) ) )  =  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) )
2523, 24fmptd 5856 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) ) : ( 0..^ ( L  -  F ) ) --> A )
26 iswrdi 11690 . . . . . . 7  |-  ( ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) ) : ( 0..^ ( L  -  F ) ) --> A  ->  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) )  e. Word  A )
2725, 26syl 16 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) )  e. Word  A
)
28 wrd0 11691 . . . . . . 7  |-  (/)  e. Word  A
2928a1i 11 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  -.  ( F..^ L )  C_  dom  S )  ->  (/)  e. Word  A
)
3027, 29ifclda 3730 . . . . 5  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L
)  C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) )  e. Word  A )
319, 30eqeltrd 2482 . . . 4  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  e. Word  A )
32313expb 1154 . . 3  |-  ( ( S  e. Word  A  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( S substr  <. F ,  L >. )  e. Word  A )
338, 32sylan2 461 . 2  |-  ( ( S  e. Word  A  /\  ( S substr  <. F ,  L >. )  =/=  (/) )  -> 
( S substr  <. F ,  L >. )  e. Word  A
)
3428a1i 11 . 2  |-  ( S  e. Word  A  ->  (/)  e. Word  A
)
351, 33, 34pm2.61ne 2646 1  |-  ( S  e. Word  A  ->  ( S substr  <. F ,  L >. )  e. Word  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2571   _Vcvv 2920    C_ wss 3284   (/)c0 3592   ifcif 3703   <.cop 3781    e. cmpt 4230    X. cxp 4839   dom cdm 4841   -->wf 5413   ` cfv 5417  (class class class)co 6044   1stc1st 6310   2ndc2nd 6311   0cc0 8950    + caddc 8953    - cmin 9251   ZZcz 10242  ..^cfzo 11094   #chash 11577  Word cword 11676   substr csubstr 11679
This theorem is referenced by:  swrdid  11731  ccatswrd  11732  swrdccat2  11734  splcl  11740  spllen  11742  splfv1  11743  splfv2a  11744  splval2  11745  swrds1  11746  wrdind  11750  gsumspl  14748  efgsres  15329  efgredleme  15334  efgredlemc  15336  efgcpbllemb  15346  frgpuplem  15363  psgnunilem5  27289  psgnunilem2  27290  lenrevcctswrd  28009  swrd0swrd  28013  swrdswrd  28015  swrdccatin12  28030  swrdccatin12b  28031  swrdccatin12c  28032  swrdccat3a  28034  swrdccat3b  28035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-card 7786  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-n0 10182  df-z 10243  df-uz 10449  df-fz 11004  df-fzo 11095  df-hash 11578  df-word 11682  df-substr 11685
  Copyright terms: Public domain W3C validator