MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdcl Unicode version

Theorem swrdcl 11452
Description: Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrdcl  |-  ( S  e. Word  A  ->  ( S substr  <. F ,  L >. )  e. Word  A )

Proof of Theorem swrdcl
Dummy variables  s 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2343 . 2  |-  ( ( S substr  <. F ,  L >. )  =  (/)  ->  (
( S substr  <. F ,  L >. )  e. Word  A  <->  (/)  e. Word  A ) )
2 n0 3464 . . . 4  |-  ( ( S substr  <. F ,  L >. )  =/=  (/)  <->  E. x  x  e.  ( S substr  <. F ,  L >. ) )
3 df-substr 11412 . . . . . . 7  |- substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) ) )
43elmpt2cl2 6063 . . . . . 6  |-  ( x  e.  ( S substr  <. F ,  L >. )  ->  <. F ,  L >.  e.  ( ZZ 
X.  ZZ ) )
5 opelxp 4719 . . . . . 6  |-  ( <. F ,  L >.  e.  ( ZZ  X.  ZZ ) 
<->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
64, 5sylib 188 . . . . 5  |-  ( x  e.  ( S substr  <. F ,  L >. )  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
76exlimiv 1666 . . . 4  |-  ( E. x  x  e.  ( S substr  <. F ,  L >. )  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
82, 7sylbi 187 . . 3  |-  ( ( S substr  <. F ,  L >. )  =/=  (/)  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
9 swrdval 11450 . . . . 5  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  =  if ( ( F..^ L ) 
C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) ) )
10 wrdf 11419 . . . . . . . . . . 11  |-  ( S  e. Word  A  ->  S : ( 0..^ (
# `  S )
) --> A )
11103ad2ant1 976 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  S : ( 0..^ (
# `  S )
) --> A )
1211ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  S : ( 0..^ ( # `  S
) ) --> A )
13 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( F..^ L
)  C_  dom  S )
14 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  x  e.  ( 0..^ ( L  -  F ) ) )
15 simpll3 996 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  L  e.  ZZ )
16 simpll2 995 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  F  e.  ZZ )
17 fzoaddel2 10907 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ ( L  -  F
) )  /\  L  e.  ZZ  /\  F  e.  ZZ )  ->  (
x  +  F )  e.  ( F..^ L
) )
1814, 15, 16, 17syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  ( F..^ L ) )
1913, 18sseldd 3181 . . . . . . . . . 10  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  dom  S )
20 fdm 5393 . . . . . . . . . . 11  |-  ( S : ( 0..^ (
# `  S )
) --> A  ->  dom  S  =  ( 0..^ (
# `  S )
) )
2112, 20syl 15 . . . . . . . . . 10  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  dom  S  =  ( 0..^ ( # `  S
) ) )
2219, 21eleqtrd 2359 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  ( 0..^ ( # `  S
) ) )
23 ffvelrn 5663 . . . . . . . . 9  |-  ( ( S : ( 0..^ ( # `  S
) ) --> A  /\  ( x  +  F
)  e.  ( 0..^ ( # `  S
) ) )  -> 
( S `  (
x  +  F ) )  e.  A )
2412, 22, 23syl2anc 642 . . . . . . . 8  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( S `  ( x  +  F
) )  e.  A
)
25 eqid 2283 . . . . . . . 8  |-  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F
) ) )  =  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) )
2624, 25fmptd 5684 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) ) : ( 0..^ ( L  -  F ) ) --> A )
27 iswrdi 11417 . . . . . . 7  |-  ( ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) ) : ( 0..^ ( L  -  F ) ) --> A  ->  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) )  e. Word  A )
2826, 27syl 15 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) )  e. Word  A
)
29 wrd0 11418 . . . . . . 7  |-  (/)  e. Word  A
3029a1i 10 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  -.  ( F..^ L )  C_  dom  S )  ->  (/)  e. Word  A
)
3128, 30ifclda 3592 . . . . 5  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L
)  C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) )  e. Word  A )
329, 31eqeltrd 2357 . . . 4  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  e. Word  A )
33323expb 1152 . . 3  |-  ( ( S  e. Word  A  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( S substr  <. F ,  L >. )  e. Word  A )
348, 33sylan2 460 . 2  |-  ( ( S  e. Word  A  /\  ( S substr  <. F ,  L >. )  =/=  (/) )  -> 
( S substr  <. F ,  L >. )  e. Word  A
)
3529a1i 10 . 2  |-  ( S  e. Word  A  ->  (/)  e. Word  A
)
361, 34, 35pm2.61ne 2521 1  |-  ( S  e. Word  A  ->  ( S substr  <. F ,  L >. )  e. Word  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    C_ wss 3152   (/)c0 3455   ifcif 3565   <.cop 3643    e. cmpt 4077    X. cxp 4687   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   0cc0 8737    + caddc 8740    - cmin 9037   ZZcz 10024  ..^cfzo 10870   #chash 11337  Word cword 11403   substr csubstr 11406
This theorem is referenced by:  swrdid  11458  ccatswrd  11459  swrdccat2  11461  splcl  11467  spllen  11469  splfv1  11470  splfv2a  11471  splval2  11472  swrds1  11473  wrdind  11477  gsumspl  14466  efgsres  15047  efgredleme  15052  efgredlemc  15054  efgcpbllemb  15064  frgpuplem  15081  psgnunilem5  27417  psgnunilem2  27418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-hash 11338  df-word 11409  df-substr 11412
  Copyright terms: Public domain W3C validator