MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrds1 Structured version   Unicode version

Theorem swrds1 11779
Description: Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
swrds1  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( W substr  <. I ,  ( I  +  1 ) >. )  =  <" ( W `  I
) "> )

Proof of Theorem swrds1
StepHypRef Expression
1 swrdcl 11758 . . . 4  |-  ( W  e. Word  A  ->  ( W substr  <. I ,  ( I  +  1 )
>. )  e. Word  A )
21adantr 452 . . 3  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( W substr  <. I ,  ( I  +  1 ) >. )  e. Word  A
)
3 simpl 444 . . . . 5  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  ->  W  e. Word  A )
4 elfzouz 11136 . . . . . . 7  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  I  e.  ( ZZ>= `  0 )
)
54adantl 453 . . . . . 6  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  ->  I  e.  ( ZZ>= ` 
0 ) )
6 elfzoelz 11132 . . . . . . . 8  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  I  e.  ZZ )
76adantl 453 . . . . . . 7  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  ->  I  e.  ZZ )
8 uzid 10492 . . . . . . 7  |-  ( I  e.  ZZ  ->  I  e.  ( ZZ>= `  I )
)
9 peano2uz 10522 . . . . . . 7  |-  ( I  e.  ( ZZ>= `  I
)  ->  ( I  +  1 )  e.  ( ZZ>= `  I )
)
107, 8, 93syl 19 . . . . . 6  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( I  +  1 )  e.  ( ZZ>= `  I ) )
11 elfzuzb 11045 . . . . . 6  |-  ( I  e.  ( 0 ... ( I  +  1 ) )  <->  ( I  e.  ( ZZ>= `  0 )  /\  ( I  +  1 )  e.  ( ZZ>= `  I ) ) )
125, 10, 11sylanbrc 646 . . . . 5  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  ->  I  e.  ( 0 ... ( I  + 
1 ) ) )
13 fzofzp1 11181 . . . . . 6  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  ( I  +  1 )  e.  ( 0 ... ( # `
 W ) ) )
1413adantl 453 . . . . 5  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( I  +  1 )  e.  ( 0 ... ( # `  W
) ) )
15 swrdlen 11762 . . . . 5  |-  ( ( W  e. Word  A  /\  I  e.  ( 0 ... ( I  + 
1 ) )  /\  ( I  +  1
)  e.  ( 0 ... ( # `  W
) ) )  -> 
( # `  ( W substr  <. I ,  ( I  +  1 ) >.
) )  =  ( ( I  +  1 )  -  I ) )
163, 12, 14, 15syl3anc 1184 . . . 4  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( # `  ( W substr  <. I ,  ( I  +  1 ) >.
) )  =  ( ( I  +  1 )  -  I ) )
177zcnd 10368 . . . . 5  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  ->  I  e.  CC )
18 ax-1cn 9040 . . . . 5  |-  1  e.  CC
19 pncan2 9304 . . . . 5  |-  ( ( I  e.  CC  /\  1  e.  CC )  ->  ( ( I  + 
1 )  -  I
)  =  1 )
2017, 18, 19sylancl 644 . . . 4  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( ( I  + 
1 )  -  I
)  =  1 )
2116, 20eqtrd 2467 . . 3  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( # `  ( W substr  <. I ,  ( I  +  1 ) >.
) )  =  1 )
22 eqs1 11753 . . 3  |-  ( ( ( W substr  <. I ,  ( I  +  1 ) >. )  e. Word  A  /\  ( # `  ( W substr  <. I ,  ( I  +  1 )
>. ) )  =  1 )  ->  ( W substr  <.
I ,  ( I  +  1 ) >.
)  =  <" (
( W substr  <. I ,  ( I  +  1 ) >. ) `  0
) "> )
232, 21, 22syl2anc 643 . 2  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( W substr  <. I ,  ( I  +  1 ) >. )  =  <" ( ( W substr  <. I ,  ( I  +  1 ) >. ) `  0
) "> )
24 0z 10285 . . . . . . 7  |-  0  e.  ZZ
25 snidg 3831 . . . . . . 7  |-  ( 0  e.  ZZ  ->  0  e.  { 0 } )
2624, 25ax-mp 8 . . . . . 6  |-  0  e.  { 0 }
2720oveq2d 6089 . . . . . . 7  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( 0..^ ( ( I  +  1 )  -  I ) )  =  ( 0..^ 1 ) )
28 fzo01 11174 . . . . . . 7  |-  ( 0..^ 1 )  =  {
0 }
2927, 28syl6eq 2483 . . . . . 6  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( 0..^ ( ( I  +  1 )  -  I ) )  =  { 0 } )
3026, 29syl5eleqr 2522 . . . . 5  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
0  e.  ( 0..^ ( ( I  + 
1 )  -  I
) ) )
31 swrdfv 11763 . . . . 5  |-  ( ( ( W  e. Word  A  /\  I  e.  (
0 ... ( I  + 
1 ) )  /\  ( I  +  1
)  e.  ( 0 ... ( # `  W
) ) )  /\  0  e.  ( 0..^ ( ( I  + 
1 )  -  I
) ) )  -> 
( ( W substr  <. I ,  ( I  +  1 ) >. ) `  0
)  =  ( W `
 ( 0  +  I ) ) )
323, 12, 14, 30, 31syl31anc 1187 . . . 4  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( ( W substr  <. I ,  ( I  +  1 ) >. ) `  0
)  =  ( W `
 ( 0  +  I ) ) )
33 addid2 9241 . . . . . . 7  |-  ( I  e.  CC  ->  (
0  +  I )  =  I )
3433eqcomd 2440 . . . . . 6  |-  ( I  e.  CC  ->  I  =  ( 0  +  I ) )
3517, 34syl 16 . . . . 5  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  ->  I  =  ( 0  +  I ) )
3635fveq2d 5724 . . . 4  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  I
)  =  ( W `
 ( 0  +  I ) ) )
3732, 36eqtr4d 2470 . . 3  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( ( W substr  <. I ,  ( I  +  1 ) >. ) `  0
)  =  ( W `
 I ) )
3837s1eqd 11746 . 2  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  ->  <" ( ( W substr  <. I ,  ( I  +  1 ) >.
) `  0 ) ">  =  <" ( W `  I ) "> )
3923, 38eqtrd 2467 1  |-  ( ( W  e. Word  A  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( W substr  <. I ,  ( I  +  1 ) >. )  =  <" ( W `  I
) "> )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {csn 3806   <.cop 3809   ` cfv 5446  (class class class)co 6073   CCcc 8980   0cc0 8982   1c1 8983    + caddc 8985    - cmin 9283   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035  ..^cfzo 11127   #chash 11610  Word cword 11709   <"cs1 11711   substr csubstr 11712
This theorem is referenced by:  wrdeqcats1  11780  wrdeqs1cat  11781  swrds2  11872
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128  df-hash 11611  df-word 11715  df-s1 11717  df-substr 11718
  Copyright terms: Public domain W3C validator