Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl212anc Structured version   Unicode version

Theorem syl212anc 1195
 Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1
sylXanc.2
sylXanc.3
sylXanc.4
sylXanc.5
syl212anc.6
Assertion
Ref Expression
syl212anc

Proof of Theorem syl212anc
StepHypRef Expression
1 sylXanc.1 . 2
2 sylXanc.2 . 2
3 sylXanc.3 . 2
4 sylXanc.4 . . 3
5 sylXanc.5 . . 3
64, 5jca 520 . 2
7 syl212anc.6 . 2
81, 2, 3, 6, 7syl211anc 1191 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   w3a 937 This theorem is referenced by:  rmob  3251  pntrmax  21260  paddasslem4  30682  4atexlemu  30923  4atexlemv  30924  cdleme20aN  31168  cdleme20g  31174  cdlemg9a  31491  cdlemg12a  31502  cdlemg17dALTN  31523  cdlemg18b  31538  cdlemg18c  31539 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
 Copyright terms: Public domain W3C validator