MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl232anc Unicode version

Theorem syl232anc 1209
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
sylXanc.6  |-  ( ph  ->  ze )
sylXanc.7  |-  ( ph  ->  si )
syl232anc.8  |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\  et )  /\  ( ze  /\  si )
)  ->  rh )
Assertion
Ref Expression
syl232anc  |-  ( ph  ->  rh )

Proof of Theorem syl232anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . 2  |-  ( ph  ->  ch )
3 sylXanc.3 . 2  |-  ( ph  ->  th )
4 sylXanc.4 . 2  |-  ( ph  ->  ta )
5 sylXanc.5 . 2  |-  ( ph  ->  et )
6 sylXanc.6 . . 3  |-  ( ph  ->  ze )
7 sylXanc.7 . . 3  |-  ( ph  ->  si )
86, 7jca 518 . 2  |-  ( ph  ->  ( ze  /\  si ) )
9 syl232anc.8 . 2  |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\  et )  /\  ( ze  /\  si )
)  ->  rh )
101, 2, 3, 4, 5, 8, 9syl231anc 1202 1  |-  ( ph  ->  rh )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  ax5seg  24638  cdleme20d  31123  cdleme22cN  31153  cdleme27a  31178
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator