MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an1br Structured version   Unicode version

Theorem syl3an1br 1223
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an1br.1  |-  ( ps  <->  ph )
syl3an1br.2  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
Assertion
Ref Expression
syl3an1br  |-  ( (
ph  /\  ch  /\  th )  ->  ta )

Proof of Theorem syl3an1br
StepHypRef Expression
1 syl3an1br.1 . . 3  |-  ( ps  <->  ph )
21biimpri 198 . 2  |-  ( ph  ->  ps )
3 syl3an1br.2 . 2  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
42, 3syl3an1 1217 1  |-  ( (
ph  /\  ch  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936
This theorem is referenced by:  cdleme0moN  30959
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator