MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an9b Structured version   Unicode version

Theorem syl3an9b 1252
Description: Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995.)
Hypotheses
Ref Expression
syl3an9b.1  |-  ( ph  ->  ( ps  <->  ch )
)
syl3an9b.2  |-  ( th 
->  ( ch  <->  ta )
)
syl3an9b.3  |-  ( et 
->  ( ta  <->  ze )
)
Assertion
Ref Expression
syl3an9b  |-  ( (
ph  /\  th  /\  et )  ->  ( ps  <->  ze )
)

Proof of Theorem syl3an9b
StepHypRef Expression
1 syl3an9b.1 . . . 4  |-  ( ph  ->  ( ps  <->  ch )
)
2 syl3an9b.2 . . . 4  |-  ( th 
->  ( ch  <->  ta )
)
31, 2sylan9bb 681 . . 3  |-  ( (
ph  /\  th )  ->  ( ps  <->  ta )
)
4 syl3an9b.3 . . 3  |-  ( et 
->  ( ta  <->  ze )
)
53, 4sylan9bb 681 . 2  |-  ( ( ( ph  /\  th )  /\  et )  -> 
( ps  <->  ze )
)
653impa 1148 1  |-  ( (
ph  /\  th  /\  et )  ->  ( ps  <->  ze )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936
This theorem is referenced by:  eloprabg  6161  dihjatcclem4  32219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator