MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3anr2 Structured version   Unicode version

Theorem syl3anr2 1238
Description: A syllogism inference. (Contributed by NM, 1-Aug-2007.)
Hypotheses
Ref Expression
syl3anr2.1  |-  ( ph  ->  th )
syl3anr2.2  |-  ( ( ch  /\  ( ps 
/\  th  /\  ta )
)  ->  et )
Assertion
Ref Expression
syl3anr2  |-  ( ( ch  /\  ( ps 
/\  ph  /\  ta )
)  ->  et )

Proof of Theorem syl3anr2
StepHypRef Expression
1 syl3anr2.1 . . 3  |-  ( ph  ->  th )
2 syl3anr2.2 . . . 4  |-  ( ( ch  /\  ( ps 
/\  th  /\  ta )
)  ->  et )
32ancoms 441 . . 3  |-  ( ( ( ps  /\  th  /\  ta )  /\  ch )  ->  et )
41, 3syl3anl2 1234 . 2  |-  ( ( ( ps  /\  ph  /\ 
ta )  /\  ch )  ->  et )
54ancoms 441 1  |-  ( ( ch  /\  ( ps 
/\  ph  /\  ta )
)  ->  et )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937
This theorem is referenced by:  mulgsubdir  14926  vcsubdir  22040  dipassr2  22353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator