MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3anr3 Unicode version

Theorem syl3anr3 1236
Description: A syllogism inference. (Contributed by NM, 23-Aug-2007.)
Hypotheses
Ref Expression
syl3anr3.1  |-  ( ph  ->  ta )
syl3anr3.2  |-  ( ( ch  /\  ( ps 
/\  th  /\  ta )
)  ->  et )
Assertion
Ref Expression
syl3anr3  |-  ( ( ch  /\  ( ps 
/\  th  /\  ph )
)  ->  et )

Proof of Theorem syl3anr3
StepHypRef Expression
1 syl3anr3.1 . . 3  |-  ( ph  ->  ta )
213anim3i 1139 . 2  |-  ( ( ps  /\  th  /\  ph )  ->  ( ps  /\ 
th  /\  ta )
)
3 syl3anr3.2 . 2  |-  ( ( ch  /\  ( ps 
/\  th  /\  ta )
)  ->  et )
42, 3sylan2 460 1  |-  ( ( ch  /\  ( ps 
/\  th  /\  ph )
)  ->  et )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  cvlatexchb1  28897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator