MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl5eleq Unicode version

Theorem syl5eleq 2369
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl5eleq.1  |-  A  e.  B
syl5eleq.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
syl5eleq  |-  ( ph  ->  A  e.  C )

Proof of Theorem syl5eleq
StepHypRef Expression
1 syl5eleq.1 . . 3  |-  A  e.  B
21a1i 10 . 2  |-  ( ph  ->  A  e.  B )
3 syl5eleq.2 . 2  |-  ( ph  ->  B  =  C )
42, 3eleqtrd 2359 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684
This theorem is referenced by:  syl5eleqr  2370  opth1  4244  opth  4245  eqelsuc  4473  tfrlem11  6404  oalimcl  6558  omlimcl  6576  frgp0  15069  txdis  17326  rankeq1o  24212
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-cleq 2276  df-clel 2279
  Copyright terms: Public domain W3C validator