MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl6eqssr Unicode version

Theorem syl6eqssr 3229
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
syl6eqssr.1  |-  ( ph  ->  B  =  A )
syl6eqssr.2  |-  B  C_  C
Assertion
Ref Expression
syl6eqssr  |-  ( ph  ->  A  C_  C )

Proof of Theorem syl6eqssr
StepHypRef Expression
1 syl6eqssr.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2288 . 2  |-  ( ph  ->  A  =  B )
3 syl6eqssr.2 . 2  |-  B  C_  C
42, 3syl6eqss 3228 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    C_ wss 3152
This theorem is referenced by:  off2  23208
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator