MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan2i Structured version   Unicode version

Theorem sylan2i 637
Description: A syllogism inference. (Contributed by NM, 1-Aug-1994.)
Hypotheses
Ref Expression
sylan2i.1  |-  ( ph  ->  th )
sylan2i.2  |-  ( ps 
->  ( ( ch  /\  th )  ->  ta )
)
Assertion
Ref Expression
sylan2i  |-  ( ps 
->  ( ( ch  /\  ph )  ->  ta )
)

Proof of Theorem sylan2i
StepHypRef Expression
1 sylan2i.1 . . 3  |-  ( ph  ->  th )
21a1i 11 . 2  |-  ( ps 
->  ( ph  ->  th )
)
3 sylan2i.2 . 2  |-  ( ps 
->  ( ( ch  /\  th )  ->  ta )
)
42, 3sylan2d 469 1  |-  ( ps 
->  ( ( ch  /\  ph )  ->  ta )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359
This theorem is referenced by:  syl2ani  638  odi  6814  pssnn  7319  noinfepOLD  7607  ltexprlem7  8911  ltaprlem  8913  sup2  9956  filufint  17944  pjnormssi  23663  pellex  26889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator