![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sylan9 | Unicode version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylan9.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylan9.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl9 68 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | imp 419 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem is referenced by: sbequi 2116 sbal1 2184 rspc2 3025 rspc3v 3029 trintss 4286 copsexg 4410 onint 4742 peano5 4835 chfnrn 5808 ffnfv 5861 f1elima 5976 f1oweALT 6041 smoel2 6592 th3q 6980 pssnn 7294 fiint 7350 dffi2 7394 alephnbtwn 7916 cfcof 8118 zorn2lem7 8346 suplem1pr 8893 cau3lem 12121 divalglem8 12883 efgi 15314 tx1stc 17643 fbunfip 17862 filuni 17878 ufileu 17912 rescncf 18888 shmodsi 22852 spanuni 23007 spansneleq 23033 mdi 23759 dmdi 23766 dmdi4 23771 funimass4f 24005 locfincmp 26282 ffnafv 27910 sbequiNEW7 29294 sbal1NEW7 29328 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 178 df-an 361 |
Copyright terms: Public domain | W3C validator |