MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylani Structured version   Unicode version

Theorem sylani 636
Description: A syllogism inference. (Contributed by NM, 2-May-1996.)
Hypotheses
Ref Expression
sylani.1  |-  ( ph  ->  ch )
sylani.2  |-  ( ps 
->  ( ( ch  /\  th )  ->  ta )
)
Assertion
Ref Expression
sylani  |-  ( ps 
->  ( ( ph  /\  th )  ->  ta )
)

Proof of Theorem sylani
StepHypRef Expression
1 sylani.1 . . 3  |-  ( ph  ->  ch )
21a1i 11 . 2  |-  ( ps 
->  ( ph  ->  ch ) )
3 sylani.2 . 2  |-  ( ps 
->  ( ( ch  /\  th )  ->  ta )
)
42, 3syland 468 1  |-  ( ps 
->  ( ( ph  /\  th )  ->  ta )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359
This theorem is referenced by:  syl2ani  638  inf3lem2  7584  zorn2lem5  8380  uzwo  10539  uzwoOLD  10540  supxrun  10894  csmdsymi  23837  pmapjoin  30649
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator