MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanr1 Unicode version

Theorem sylanr1 633
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.)
Hypotheses
Ref Expression
sylanr1.1  |-  ( ph  ->  ch )
sylanr1.2  |-  ( ( ps  /\  ( ch 
/\  th ) )  ->  ta )
Assertion
Ref Expression
sylanr1  |-  ( ( ps  /\  ( ph  /\ 
th ) )  ->  ta )

Proof of Theorem sylanr1
StepHypRef Expression
1 sylanr1.1 . . 3  |-  ( ph  ->  ch )
21anim1i 551 . 2  |-  ( (
ph  /\  th )  ->  ( ch  /\  th ) )
3 sylanr1.2 . 2  |-  ( ( ps  /\  ( ch 
/\  th ) )  ->  ta )
42, 3sylan2 460 1  |-  ( ( ps  /\  ( ph  /\ 
th ) )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  adantrll  702  adantrlr  703  sbthlem9  6979  pczpre  12900  blsscls2  18050  rpvmasumlem  20636  leopmuli  22713  chirredlem1  22970  chirredlem3  22972  dvconstbi  27551  reccot  28228  rectan  28229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator