MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldd Unicode version

Theorem syldd 63
Description: Nested syllogism deduction. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 11-May-2013.)
Hypotheses
Ref Expression
syldd.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
syldd.2  |-  ( ph  ->  ( ps  ->  ( th  ->  ta ) ) )
Assertion
Ref Expression
syldd  |-  ( ph  ->  ( ps  ->  ( ch  ->  ta ) ) )

Proof of Theorem syldd
StepHypRef Expression
1 syldd.2 . 2  |-  ( ph  ->  ( ps  ->  ( th  ->  ta ) ) )
2 syldd.1 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
3 imim2 51 . 2  |-  ( ( th  ->  ta )  ->  ( ( ch  ->  th )  ->  ( ch  ->  ta ) ) )
41, 2, 3syl6c 62 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ta ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem is referenced by:  syl5d  64  syl6d  66  ee23  1370  tfinds  4781  tz7.49  6640  dffi2  7365  ordiso2  7419  rankuni2b  7714  soseq  25280  brbtwn2  25560  prtlem60  26381  lvoli2  29697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8
  Copyright terms: Public domain W3C validator