MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1 Unicode version

Theorem sylow1 15157
Description: Sylow's first theorem. If  P ^ N is a prime power that divides the cardinality of  G, then  G has a supgroup with size  P ^ N. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x  |-  X  =  ( Base `  G
)
sylow1.g  |-  ( ph  ->  G  e.  Grp )
sylow1.f  |-  ( ph  ->  X  e.  Fin )
sylow1.p  |-  ( ph  ->  P  e.  Prime )
sylow1.n  |-  ( ph  ->  N  e.  NN0 )
sylow1.d  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
Assertion
Ref Expression
sylow1  |-  ( ph  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
Distinct variable groups:    g, N    g, X    g, G    P, g    ph, g

Proof of Theorem sylow1
Dummy variables  a 
b  s  u  x  y  z  h  k  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1.x . . 3  |-  X  =  ( Base `  G
)
2 sylow1.g . . 3  |-  ( ph  ->  G  e.  Grp )
3 sylow1.f . . 3  |-  ( ph  ->  X  e.  Fin )
4 sylow1.p . . 3  |-  ( ph  ->  P  e.  Prime )
5 sylow1.n . . 3  |-  ( ph  ->  N  e.  NN0 )
6 sylow1.d . . 3  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
7 eqid 2380 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
8 eqid 2380 . . 3  |-  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  =  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }
9 oveq2 6021 . . . . . . 7  |-  ( s  =  z  ->  (
u ( +g  `  G
) s )  =  ( u ( +g  `  G ) z ) )
109cbvmptv 4234 . . . . . 6  |-  ( s  e.  v  |->  ( u ( +g  `  G
) s ) )  =  ( z  e.  v  |->  ( u ( +g  `  G ) z ) )
11 oveq1 6020 . . . . . . 7  |-  ( u  =  x  ->  (
u ( +g  `  G
) z )  =  ( x ( +g  `  G ) z ) )
1211mpteq2dv 4230 . . . . . 6  |-  ( u  =  x  ->  (
z  e.  v  |->  ( u ( +g  `  G
) z ) )  =  ( z  e.  v  |->  ( x ( +g  `  G ) z ) ) )
1310, 12syl5eq 2424 . . . . 5  |-  ( u  =  x  ->  (
s  e.  v  |->  ( u ( +g  `  G
) s ) )  =  ( z  e.  v  |->  ( x ( +g  `  G ) z ) ) )
1413rneqd 5030 . . . 4  |-  ( u  =  x  ->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) )  =  ran  (
z  e.  v  |->  ( x ( +g  `  G
) z ) ) )
15 mpteq1 4223 . . . . 5  |-  ( v  =  y  ->  (
z  e.  v  |->  ( x ( +g  `  G
) z ) )  =  ( z  e.  y  |->  ( x ( +g  `  G ) z ) ) )
1615rneqd 5030 . . . 4  |-  ( v  =  y  ->  ran  ( z  e.  v 
|->  ( x ( +g  `  G ) z ) )  =  ran  (
z  e.  y  |->  ( x ( +g  `  G
) z ) ) )
1714, 16cbvmpt2v 6084 . . 3  |-  ( u  e.  X ,  v  e.  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) )  =  ( x  e.  X , 
y  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( z  e.  y 
|->  ( x ( +g  `  G ) z ) ) )
18 preq12 3821 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  { a ,  b }  =  { x ,  y } )
1918sseq1d 3311 . . . . 5  |-  ( ( a  =  x  /\  b  =  y )  ->  ( { a ,  b }  C_  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  <->  { x ,  y }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } ) )
20 oveq2 6021 . . . . . . 7  |-  ( a  =  x  ->  (
k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) x ) )
21 id 20 . . . . . . 7  |-  ( b  =  y  ->  b  =  y )
2220, 21eqeqan12d 2395 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b  <->  ( k
( u  e.  X ,  v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) )
2322rexbidv 2663 . . . . 5  |-  ( ( a  =  x  /\  b  =  y )  ->  ( E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b  <->  E. k  e.  X  ( k
( u  e.  X ,  v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) )
2419, 23anbi12d 692 . . . 4  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( { a ,  b }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b )  <->  ( {
x ,  y } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) ) )
2524cbvopabv 4211 . . 3  |-  { <. a ,  b >.  |  ( { a ,  b }  C_  { s  e.  ~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) }
261, 2, 3, 4, 5, 6, 7, 8, 17, 25sylow1lem3 15154 . 2  |-  ( ph  ->  E. h  e.  {
s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  ( P  pCnt  ( # `
 [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) )
272adantr 452 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  G  e.  Grp )
283adantr 452 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  X  e.  Fin )
294adantr 452 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  P  e.  Prime )
305adantr 452 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  N  e.  NN0 )
316adantr 452 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  -> 
( P ^ N
)  ||  ( # `  X
) )
32 simprl 733 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  h  e.  { s  e.  ~P X  |  (
# `  s )  =  ( P ^ N ) } )
33 eqid 2380 . . 3  |-  { t  e.  X  |  ( t ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) h )  =  h }  =  { t  e.  X  |  ( t ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) h )  =  h }
34 simprr 734 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  -> 
( P  pCnt  ( # `
 [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) )
351, 27, 28, 29, 30, 31, 7, 8, 17, 25, 32, 33, 34sylow1lem5 15156 . 2  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
3626, 35rexlimddv 2770 1  |-  ( ph  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2643   {crab 2646    C_ wss 3256   ~Pcpw 3735   {cpr 3751   class class class wbr 4146   {copab 4199    e. cmpt 4200   ran crn 4812   ` cfv 5387  (class class class)co 6013    e. cmpt2 6015   [cec 6832   Fincfn 7038    <_ cle 9047    - cmin 9216   NN0cn0 10146   ^cexp 11302   #chash 11538    || cdivides 12772   Primecprime 12999    pCnt cpc 13130   Basecbs 13389   +g cplusg 13449   Grpcgrp 14605  SubGrpcsubg 14858
This theorem is referenced by:  odcau  15158  slwhash  15178
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-disj 4117  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-2o 6654  df-oadd 6657  df-er 6834  df-ec 6836  df-qs 6840  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-oi 7405  df-card 7752  df-cda 7974  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-q 10500  df-rp 10538  df-fz 10969  df-fzo 11059  df-fl 11122  df-mod 11171  df-seq 11244  df-exp 11303  df-fac 11487  df-bc 11514  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-clim 12202  df-sum 12400  df-dvds 12773  df-gcd 12927  df-prm 13000  df-pc 13131  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-0g 13647  df-mnd 14610  df-grp 14732  df-minusg 14733  df-subg 14861  df-eqg 14863  df-ga 14987
  Copyright terms: Public domain W3C validator