MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2 Structured version   Unicode version

Theorem sylow2 15252
Description: Sylow's second theorem. See also sylow2b 15249 for the "hard" part of the proof. Any two Sylow  P-subgroups are conjugate to one another, and hence the same size, namely 
P ^ ( P 
pCnt  |  X  | 
) (see fislw 15251). (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2.x  |-  X  =  ( Base `  G
)
sylow2.f  |-  ( ph  ->  X  e.  Fin )
sylow2.h  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
sylow2.k  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
sylow2.a  |-  .+  =  ( +g  `  G )
sylow2.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
sylow2  |-  ( ph  ->  E. g  e.  X  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Distinct variable groups:    x,  .-    x, g, 
.+    g, G, x    g, H, x    g, K, x    ph, g    g, X, x
Allowed substitution hints:    ph( x)    P( x, g)    .- ( g)

Proof of Theorem sylow2
StepHypRef Expression
1 sylow2.x . . 3  |-  X  =  ( Base `  G
)
2 sylow2.f . . 3  |-  ( ph  ->  X  e.  Fin )
3 sylow2.h . . . 4  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
4 slwsubg 15236 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  H  e.  (SubGrp `  G ) )
53, 4syl 16 . . 3  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
6 sylow2.k . . . 4  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
7 slwsubg 15236 . . . 4  |-  ( K  e.  ( P pSyl  G
)  ->  K  e.  (SubGrp `  G ) )
86, 7syl 16 . . 3  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
9 sylow2.a . . 3  |-  .+  =  ( +g  `  G )
10 eqid 2435 . . . . 5  |-  ( Gs  H )  =  ( Gs  H )
1110slwpgp 15239 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  P pGrp  ( Gs  H ) )
123, 11syl 16 . . 3  |-  ( ph  ->  P pGrp  ( Gs  H ) )
131, 2, 6slwhash 15250 . . 3  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
14 sylow2.d . . 3  |-  .-  =  ( -g `  G )
151, 2, 5, 8, 9, 12, 13, 14sylow2b 15249 . 2  |-  ( ph  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
162adantr 452 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  X  e.  Fin )
178adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  K  e.  (SubGrp `  G ) )
18 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  g  e.  X
)
19 eqid 2435 . . . . . . . . 9  |-  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  =  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) )
201, 9, 14, 19conjsubg 15029 . . . . . . . 8  |-  ( ( K  e.  (SubGrp `  G )  /\  g  e.  X )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  e.  (SubGrp `  G ) )
2117, 18, 20syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  e.  (SubGrp `  G
) )
221subgss 14937 . . . . . . 7  |-  ( ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  C_  X
)
2321, 22syl 16 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) 
C_  X )
24 ssfi 7321 . . . . . 6  |-  ( ( X  e.  Fin  /\  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  C_  X
)  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  e.  Fin )
2516, 23, 24syl2anc 643 . . . . 5  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  e.  Fin )
26 simprr 734 . . . . 5  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
271, 2, 3slwhash 15250 . . . . . . . . 9  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
2827, 13eqtr4d 2470 . . . . . . . 8  |-  ( ph  ->  ( # `  H
)  =  ( # `  K ) )
291subgss 14937 . . . . . . . . . . 11  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
305, 29syl 16 . . . . . . . . . 10  |-  ( ph  ->  H  C_  X )
31 ssfi 7321 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  H  C_  X )  ->  H  e.  Fin )
322, 30, 31syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  H  e.  Fin )
331subgss 14937 . . . . . . . . . . 11  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
348, 33syl 16 . . . . . . . . . 10  |-  ( ph  ->  K  C_  X )
35 ssfi 7321 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  K  C_  X )  ->  K  e.  Fin )
362, 34, 35syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  K  e.  Fin )
37 hashen 11623 . . . . . . . . 9  |-  ( ( H  e.  Fin  /\  K  e.  Fin )  ->  ( ( # `  H
)  =  ( # `  K )  <->  H  ~~  K ) )
3832, 36, 37syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( ( # `  H
)  =  ( # `  K )  <->  H  ~~  K ) )
3928, 38mpbid 202 . . . . . . 7  |-  ( ph  ->  H  ~~  K )
4039adantr 452 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  ~~  K
)
411, 9, 14, 19conjsubgen 15030 . . . . . . 7  |-  ( ( K  e.  (SubGrp `  G )  /\  g  e.  X )  ->  K  ~~  ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) ) )
4217, 18, 41syl2anc 643 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  K  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
43 entr 7151 . . . . . 6  |-  ( ( H  ~~  K  /\  K  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )  ->  H  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
4440, 42, 43syl2anc 643 . . . . 5  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
45 fisseneq 7312 . . . . 5  |-  ( ( ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) )  e. 
Fin  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  /\  H  ~~  ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) ) )  ->  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
4625, 26, 44, 45syl3anc 1184 . . . 4  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
4746expr 599 . . 3  |-  ( (
ph  /\  g  e.  X )  ->  ( H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  ->  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
4847reximdva 2810 . 2  |-  ( ph  ->  ( E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  ->  E. g  e.  X  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
4915, 48mpd 15 1  |-  ( ph  ->  E. g  e.  X  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   ran crn 4871   ` cfv 5446  (class class class)co 6073    ~~ cen 7098   Fincfn 7101   ^cexp 11374   #chash 11610    pCnt cpc 13202   Basecbs 13461   ↾s cress 13462   +g cplusg 13521   -gcsg 14680  SubGrpcsubg 14930   pGrp cpgp 15157   pSyl cslw 15158
This theorem is referenced by:  sylow3lem3  15255  sylow3lem6  15258
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-ec 6899  df-qs 6903  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472  df-dvds 12845  df-gcd 12999  df-prm 13072  df-pc 13203  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-0g 13719  df-mnd 14682  df-submnd 14731  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mulg 14807  df-subg 14933  df-eqg 14935  df-ghm 14996  df-ga 15059  df-od 15159  df-pgp 15161  df-slw 15162
  Copyright terms: Public domain W3C validator