MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2 Unicode version

Theorem sylow2 14953
Description: Sylow's second theorem. See also sylow2b 14950 for the "hard" part of the proof. Any two Sylow  P-subgroups are conjugate to one another, and hence the same size, namely 
P ^ ( P 
pCnt  |  X  | 
) (see fislw 14952). (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2.x  |-  X  =  ( Base `  G
)
sylow2.f  |-  ( ph  ->  X  e.  Fin )
sylow2.h  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
sylow2.k  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
sylow2.a  |-  .+  =  ( +g  `  G )
sylow2.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
sylow2  |-  ( ph  ->  E. g  e.  X  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Distinct variable groups:    x,  .-    x, g, 
.+    g, G, x    g, H, x    g, K, x    ph, g    g, X, x
Allowed substitution hints:    ph( x)    P( x, g)    .- ( g)

Proof of Theorem sylow2
StepHypRef Expression
1 sylow2.x . . 3  |-  X  =  ( Base `  G
)
2 sylow2.f . . 3  |-  ( ph  ->  X  e.  Fin )
3 sylow2.h . . . 4  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
4 slwsubg 14937 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  H  e.  (SubGrp `  G ) )
53, 4syl 15 . . 3  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
6 sylow2.k . . . 4  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
7 slwsubg 14937 . . . 4  |-  ( K  e.  ( P pSyl  G
)  ->  K  e.  (SubGrp `  G ) )
86, 7syl 15 . . 3  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
9 sylow2.a . . 3  |-  .+  =  ( +g  `  G )
10 eqid 2296 . . . . 5  |-  ( Gs  H )  =  ( Gs  H )
1110slwpgp 14940 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  P pGrp  ( Gs  H ) )
123, 11syl 15 . . 3  |-  ( ph  ->  P pGrp  ( Gs  H ) )
131, 2, 6slwhash 14951 . . 3  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
14 sylow2.d . . 3  |-  .-  =  ( -g `  G )
151, 2, 5, 8, 9, 12, 13, 14sylow2b 14950 . 2  |-  ( ph  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
162adantr 451 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  X  e.  Fin )
178adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  K  e.  (SubGrp `  G ) )
18 simprl 732 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  g  e.  X
)
19 eqid 2296 . . . . . . . . 9  |-  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  =  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) )
201, 9, 14, 19conjsubg 14730 . . . . . . . 8  |-  ( ( K  e.  (SubGrp `  G )  /\  g  e.  X )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  e.  (SubGrp `  G ) )
2117, 18, 20syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  e.  (SubGrp `  G
) )
221subgss 14638 . . . . . . 7  |-  ( ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  C_  X
)
2321, 22syl 15 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) 
C_  X )
24 ssfi 7099 . . . . . 6  |-  ( ( X  e.  Fin  /\  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  C_  X
)  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  e.  Fin )
2516, 23, 24syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  e.  Fin )
26 simprr 733 . . . . 5  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
271, 2, 3slwhash 14951 . . . . . . . . 9  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
2827, 13eqtr4d 2331 . . . . . . . 8  |-  ( ph  ->  ( # `  H
)  =  ( # `  K ) )
291subgss 14638 . . . . . . . . . . 11  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
305, 29syl 15 . . . . . . . . . 10  |-  ( ph  ->  H  C_  X )
31 ssfi 7099 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  H  C_  X )  ->  H  e.  Fin )
322, 30, 31syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  H  e.  Fin )
331subgss 14638 . . . . . . . . . . 11  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
348, 33syl 15 . . . . . . . . . 10  |-  ( ph  ->  K  C_  X )
35 ssfi 7099 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  K  C_  X )  ->  K  e.  Fin )
362, 34, 35syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  K  e.  Fin )
37 hashen 11362 . . . . . . . . 9  |-  ( ( H  e.  Fin  /\  K  e.  Fin )  ->  ( ( # `  H
)  =  ( # `  K )  <->  H  ~~  K ) )
3832, 36, 37syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( ( # `  H
)  =  ( # `  K )  <->  H  ~~  K ) )
3928, 38mpbid 201 . . . . . . 7  |-  ( ph  ->  H  ~~  K )
4039adantr 451 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  ~~  K
)
411, 9, 14, 19conjsubgen 14731 . . . . . . 7  |-  ( ( K  e.  (SubGrp `  G )  /\  g  e.  X )  ->  K  ~~  ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) ) )
4217, 18, 41syl2anc 642 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  K  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
43 entr 6929 . . . . . 6  |-  ( ( H  ~~  K  /\  K  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )  ->  H  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
4440, 42, 43syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
45 fisseneq 7090 . . . . 5  |-  ( ( ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) )  e. 
Fin  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  /\  H  ~~  ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) ) )  ->  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
4625, 26, 44, 45syl3anc 1182 . . . 4  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
4746expr 598 . . 3  |-  ( (
ph  /\  g  e.  X )  ->  ( H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  ->  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
4847reximdva 2668 . 2  |-  ( ph  ->  ( E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  ->  E. g  e.  X  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
4915, 48mpd 14 1  |-  ( ph  ->  E. g  e.  X  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   ran crn 4706   ` cfv 5271  (class class class)co 5874    ~~ cen 6876   Fincfn 6879   ^cexp 11120   #chash 11353    pCnt cpc 12905   Basecbs 13164   ↾s cress 13165   +g cplusg 13224   -gcsg 14381  SubGrpcsubg 14631   pGrp cpgp 14858   pSyl cslw 14859
This theorem is referenced by:  sylow3lem3  14956  sylow3lem6  14959
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-eqg 14636  df-ghm 14697  df-ga 14760  df-od 14860  df-pgp 14862  df-slw 14863
  Copyright terms: Public domain W3C validator