MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem1 Unicode version

Theorem sylow3lem1 14938
Description: Lemma for sylow3 14944, first part. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x  |-  X  =  ( Base `  G
)
sylow3.g  |-  ( ph  ->  G  e.  Grp )
sylow3.xf  |-  ( ph  ->  X  e.  Fin )
sylow3.p  |-  ( ph  ->  P  e.  Prime )
sylow3lem1.a  |-  .+  =  ( +g  `  G )
sylow3lem1.d  |-  .-  =  ( -g `  G )
sylow3lem1.m  |-  .(+)  =  ( x  e.  X , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
Assertion
Ref Expression
sylow3lem1  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  ( P pSyl  G )
) )
Distinct variable groups:    x, y,
z,  .-    x,  .(+) , y, z   
x, X, y, z   
x, G, y, z    ph, x, y, z    x,  .+ , y, z    x, P, y, z

Proof of Theorem sylow3lem1
Dummy variables  a 
b  c  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . 3  |-  ( ph  ->  G  e.  Grp )
2 ovex 5883 . . 3  |-  ( P pSyl 
G )  e.  _V
31, 2jctir 524 . 2  |-  ( ph  ->  ( G  e.  Grp  /\  ( P pSyl  G )  e.  _V ) )
4 sylow3.xf . . . . . . . . . . 11  |-  ( ph  ->  X  e.  Fin )
5 sylow3.p . . . . . . . . . . 11  |-  ( ph  ->  P  e.  Prime )
6 sylow3.x . . . . . . . . . . . 12  |-  X  =  ( Base `  G
)
76fislw 14936 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  ->  (
y  e.  ( P pSyl 
G )  <->  ( y  e.  (SubGrp `  G )  /\  ( # `  y
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) ) )
81, 4, 5, 7syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( P pSyl  G )  <->  ( y  e.  (SubGrp `  G )  /\  ( # `  y
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) ) )
98biimpa 470 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( P pSyl  G )
)  ->  ( y  e.  (SubGrp `  G )  /\  ( # `  y
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
109adantrl 696 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  (
y  e.  (SubGrp `  G )  /\  ( # `
 y )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )
1110simpld 445 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  y  e.  (SubGrp `  G )
)
12 simprl 732 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  x  e.  X )
13 sylow3lem1.a . . . . . . . 8  |-  .+  =  ( +g  `  G )
14 sylow3lem1.d . . . . . . . 8  |-  .-  =  ( -g `  G )
15 eqid 2283 . . . . . . . 8  |-  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) )  =  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) )
166, 13, 14, 15conjsubg 14714 . . . . . . 7  |-  ( ( y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  e.  (SubGrp `  G ) )
1711, 12, 16syl2anc 642 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  e.  (SubGrp `  G ) )
186, 13, 14, 15conjsubgen 14715 . . . . . . . . 9  |-  ( ( y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  y  ~~  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) ) )
1911, 12, 18syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  y  ~~  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) ) )
204adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  X  e.  Fin )
216subgss 14622 . . . . . . . . . . 11  |-  ( y  e.  (SubGrp `  G
)  ->  y  C_  X )
2211, 21syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  y  C_  X )
23 ssfi 7083 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  y  C_  X )  -> 
y  e.  Fin )
2420, 22, 23syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  y  e.  Fin )
256subgss 14622 . . . . . . . . . . 11  |-  ( ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  e.  (SubGrp `  G )  ->  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  C_  X
)
2617, 25syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  C_  X
)
27 ssfi 7083 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  C_  X
)  ->  ran  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) )  e.  Fin )
2820, 26, 27syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  e.  Fin )
29 hashen 11346 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  e.  Fin )  ->  ( ( # `  y )  =  (
# `  ran  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) ) )  <->  y  ~~  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) ) ) )
3024, 28, 29syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  (
( # `  y )  =  ( # `  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) ) )  <->  y  ~~  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) ) ) )
3119, 30mpbird 223 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  ( # `
 y )  =  ( # `  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) ) ) )
3210simprd 449 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  ( # `
 y )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
3331, 32eqtr3d 2317 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  ( # `
 ran  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) ) )  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
346fislw 14936 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  ->  ( ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  e.  ( P pSyl  G )  <->  ( ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  e.  (SubGrp `  G )  /\  ( # `
 ran  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) ) )  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) ) )
351, 4, 5, 34syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( ran  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) )  e.  ( P pSyl  G
)  <->  ( ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
)  e.  (SubGrp `  G )  /\  ( # `
 ran  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) ) )  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) ) )
3635adantr 451 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  ( ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  e.  ( P pSyl  G )  <->  ( ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  e.  (SubGrp `  G )  /\  ( # `
 ran  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) ) )  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) ) )
3717, 33, 36mpbir2and 888 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  ( P pSyl  G ) ) )  ->  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  e.  ( P pSyl  G ) )
3837ralrimivva 2635 . . . 4  |-  ( ph  ->  A. x  e.  X  A. y  e.  ( P pSyl  G ) ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
)  e.  ( P pSyl 
G ) )
39 sylow3lem1.m . . . . 5  |-  .(+)  =  ( x  e.  X , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
4039fmpt2 6191 . . . 4  |-  ( A. x  e.  X  A. y  e.  ( P pSyl  G ) ran  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) )  e.  ( P pSyl  G
)  <->  .(+)  : ( X  X.  ( P pSyl  G
) ) --> ( P pSyl 
G ) )
4138, 40sylib 188 . . 3  |-  ( ph  -> 
.(+)  : ( X  X.  ( P pSyl  G )
) --> ( P pSyl  G
) )
421adantr 451 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  G  e.  Grp )
43 eqid 2283 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
446, 43grpidcl 14510 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
4542, 44syl 15 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  ( 0g `  G )  e.  X
)
46 simpr 447 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  a  e.  ( P pSyl  G )
)
47 simpr 447 . . . . . . . . . 10  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  y  =  a )
48 simpl 443 . . . . . . . . . . . 12  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  x  =  ( 0g
`  G ) )
4948oveq1d 5873 . . . . . . . . . . 11  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  ( x  .+  z
)  =  ( ( 0g `  G ) 
.+  z ) )
5049, 48oveq12d 5876 . . . . . . . . . 10  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  ( ( x  .+  z )  .-  x
)  =  ( ( ( 0g `  G
)  .+  z )  .-  ( 0g `  G
) ) )
5147, 50mpteq12dv 4098 . . . . . . . . 9  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ( z  e.  a  |->  ( ( ( 0g `  G )  .+  z
)  .-  ( 0g `  G ) ) ) )
5251rneqd 4906 . . . . . . . 8  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) )  =  ran  ( z  e.  a  |->  ( ( ( 0g `  G ) 
.+  z )  .-  ( 0g `  G ) ) ) )
53 vex 2791 . . . . . . . . . 10  |-  a  e. 
_V
5453mptex 5746 . . . . . . . . 9  |-  ( z  e.  a  |->  ( ( ( 0g `  G
)  .+  z )  .-  ( 0g `  G
) ) )  e. 
_V
5554rnex 4942 . . . . . . . 8  |-  ran  (
z  e.  a  |->  ( ( ( 0g `  G )  .+  z
)  .-  ( 0g `  G ) ) )  e.  _V
5652, 39, 55ovmpt2a 5978 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  X  /\  a  e.  ( P pSyl  G ) )  ->  (
( 0g `  G
)  .(+)  a )  =  ran  ( z  e.  a  |->  ( ( ( 0g `  G ) 
.+  z )  .-  ( 0g `  G ) ) ) )
5745, 46, 56syl2anc 642 . . . . . 6  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  ( ( 0g `  G )  .(+)  a )  =  ran  (
z  e.  a  |->  ( ( ( 0g `  G )  .+  z
)  .-  ( 0g `  G ) ) ) )
581ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  z  e.  a )  ->  G  e.  Grp )
59 slwsubg 14921 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( P pSyl  G
)  ->  a  e.  (SubGrp `  G ) )
6059adantl 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  a  e.  (SubGrp `  G ) )
616subgss 14622 . . . . . . . . . . . . . . 15  |-  ( a  e.  (SubGrp `  G
)  ->  a  C_  X )
6260, 61syl 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  a  C_  X )
6362sselda 3180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  z  e.  a )  ->  z  e.  X )
646, 13, 43grplid 14512 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G )  .+  z
)  =  z )
6558, 63, 64syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  z  e.  a )  ->  (
( 0g `  G
)  .+  z )  =  z )
6665oveq1d 5873 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  z  e.  a )  ->  (
( ( 0g `  G )  .+  z
)  .-  ( 0g `  G ) )  =  ( z  .-  ( 0g `  G ) ) )
676, 43, 14grpsubid1 14551 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( z  .-  ( 0g `  G ) )  =  z )
6858, 63, 67syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  z  e.  a )  ->  (
z  .-  ( 0g `  G ) )  =  z )
6966, 68eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  z  e.  a )  ->  (
( ( 0g `  G )  .+  z
)  .-  ( 0g `  G ) )  =  z )
7069mpteq2dva 4106 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  ( z  e.  a  |->  ( ( ( 0g `  G
)  .+  z )  .-  ( 0g `  G
) ) )  =  ( z  e.  a 
|->  z ) )
71 mptresid 5004 . . . . . . . . 9  |-  ( z  e.  a  |->  z )  =  (  _I  |`  a
)
7270, 71syl6eq 2331 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  ( z  e.  a  |->  ( ( ( 0g `  G
)  .+  z )  .-  ( 0g `  G
) ) )  =  (  _I  |`  a
) )
7372rneqd 4906 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  ran  ( z  e.  a  |->  ( ( ( 0g `  G
)  .+  z )  .-  ( 0g `  G
) ) )  =  ran  (  _I  |`  a
) )
74 rnresi 5028 . . . . . . 7  |-  ran  (  _I  |`  a )  =  a
7573, 74syl6eq 2331 . . . . . 6  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  ran  ( z  e.  a  |->  ( ( ( 0g `  G
)  .+  z )  .-  ( 0g `  G
) ) )  =  a )
7657, 75eqtrd 2315 . . . . 5  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  ( ( 0g `  G )  .(+)  a )  =  a )
77 ovex 5883 . . . . . . . . . 10  |-  ( ( c  .+  z ) 
.-  c )  e. 
_V
78 oveq2 5866 . . . . . . . . . . 11  |-  ( w  =  ( ( c 
.+  z )  .-  c )  ->  (
b  .+  w )  =  ( b  .+  ( ( c  .+  z )  .-  c
) ) )
7978oveq1d 5873 . . . . . . . . . 10  |-  ( w  =  ( ( c 
.+  z )  .-  c )  ->  (
( b  .+  w
)  .-  b )  =  ( ( b 
.+  ( ( c 
.+  z )  .-  c ) )  .-  b ) )
8077, 79abrexco 5766 . . . . . . . . 9  |-  { u  |  E. w  e.  {
v  |  E. z  e.  a  v  =  ( ( c  .+  z )  .-  c
) } u  =  ( ( b  .+  w )  .-  b
) }  =  {
u  |  E. z  e.  a  u  =  ( ( b  .+  ( ( c  .+  z )  .-  c
) )  .-  b
) }
81 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
c  e.  X )
82 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
a  e.  ( P pSyl 
G ) )
83 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  c  /\  y  =  a )  ->  y  =  a )
84 simpl 443 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  c  /\  y  =  a )  ->  x  =  c )
8584oveq1d 5873 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  c  /\  y  =  a )  ->  ( x  .+  z
)  =  ( c 
.+  z ) )
8685, 84oveq12d 5876 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  c  /\  y  =  a )  ->  ( ( x  .+  z )  .-  x
)  =  ( ( c  .+  z ) 
.-  c ) )
8783, 86mpteq12dv 4098 . . . . . . . . . . . . . . 15  |-  ( ( x  =  c  /\  y  =  a )  ->  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ( z  e.  a  |->  ( ( c  .+  z
)  .-  c )
) )
8887rneqd 4906 . . . . . . . . . . . . . 14  |-  ( ( x  =  c  /\  y  =  a )  ->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) )  =  ran  ( z  e.  a  |->  ( ( c 
.+  z )  .-  c ) ) )
8953mptex 5746 . . . . . . . . . . . . . . 15  |-  ( z  e.  a  |->  ( ( c  .+  z ) 
.-  c ) )  e.  _V
9089rnex 4942 . . . . . . . . . . . . . 14  |-  ran  (
z  e.  a  |->  ( ( c  .+  z
)  .-  c )
)  e.  _V
9188, 39, 90ovmpt2a 5978 . . . . . . . . . . . . 13  |-  ( ( c  e.  X  /\  a  e.  ( P pSyl  G ) )  ->  (
c  .(+)  a )  =  ran  ( z  e.  a  |->  ( ( c 
.+  z )  .-  c ) ) )
9281, 82, 91syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( c  .(+)  a )  =  ran  ( z  e.  a  |->  ( ( c  .+  z ) 
.-  c ) ) )
93 eqid 2283 . . . . . . . . . . . . 13  |-  ( z  e.  a  |->  ( ( c  .+  z ) 
.-  c ) )  =  ( z  e.  a  |->  ( ( c 
.+  z )  .-  c ) )
9493rnmpt 4925 . . . . . . . . . . . 12  |-  ran  (
z  e.  a  |->  ( ( c  .+  z
)  .-  c )
)  =  { v  |  E. z  e.  a  v  =  ( ( c  .+  z
)  .-  c ) }
9592, 94syl6eq 2331 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( c  .(+)  a )  =  { v  |  E. z  e.  a  v  =  ( ( c  .+  z ) 
.-  c ) } )
9695rexeqdv 2743 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( E. w  e.  ( c  .(+)  a ) u  =  ( ( b  .+  w ) 
.-  b )  <->  E. w  e.  { v  |  E. z  e.  a  v  =  ( ( c 
.+  z )  .-  c ) } u  =  ( ( b 
.+  w )  .-  b ) ) )
9796abbidv 2397 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  ->  { u  |  E. w  e.  ( c  .(+)  a ) u  =  ( ( b  .+  w )  .-  b
) }  =  {
u  |  E. w  e.  { v  |  E. z  e.  a  v  =  ( ( c 
.+  z )  .-  c ) } u  =  ( ( b 
.+  w )  .-  b ) } )
9842adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  ->  G  e.  Grp )
9998adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  G  e.  Grp )
100 simprl 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
b  e.  X )
1016, 13grpcl 14495 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  b  e.  X  /\  c  e.  X )  ->  ( b  .+  c
)  e.  X )
10298, 100, 81, 101syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( b  .+  c
)  e.  X )
103102adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
b  .+  c )  e.  X )
10463adantlr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  z  e.  X )
1056, 13grpcl 14495 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  ( b  .+  c
)  e.  X  /\  z  e.  X )  ->  ( ( b  .+  c )  .+  z
)  e.  X )
10699, 103, 104, 105syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
( b  .+  c
)  .+  z )  e.  X )
10781adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  c  e.  X )
108100adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  b  e.  X )
1096, 13, 14grpsubsub4 14558 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( ( ( b 
.+  c )  .+  z )  e.  X  /\  c  e.  X  /\  b  e.  X
) )  ->  (
( ( ( b 
.+  c )  .+  z )  .-  c
)  .-  b )  =  ( ( ( b  .+  c ) 
.+  z )  .-  ( b  .+  c
) ) )
11099, 106, 107, 108, 109syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
( ( ( b 
.+  c )  .+  z )  .-  c
)  .-  b )  =  ( ( ( b  .+  c ) 
.+  z )  .-  ( b  .+  c
) ) )
1116, 13grpass 14496 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  ( b  e.  X  /\  c  e.  X  /\  z  e.  X
) )  ->  (
( b  .+  c
)  .+  z )  =  ( b  .+  ( c  .+  z
) ) )
11299, 108, 107, 104, 111syl13anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
( b  .+  c
)  .+  z )  =  ( b  .+  ( c  .+  z
) ) )
113112oveq1d 5873 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
( ( b  .+  c )  .+  z
)  .-  c )  =  ( ( b 
.+  ( c  .+  z ) )  .-  c ) )
1146, 13grpcl 14495 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  c  e.  X  /\  z  e.  X )  ->  ( c  .+  z
)  e.  X )
11599, 107, 104, 114syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
c  .+  z )  e.  X )
1166, 13, 14grpaddsubass 14555 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  ( b  e.  X  /\  ( c  .+  z
)  e.  X  /\  c  e.  X )
)  ->  ( (
b  .+  ( c  .+  z ) )  .-  c )  =  ( b  .+  ( ( c  .+  z ) 
.-  c ) ) )
11799, 108, 115, 107, 116syl13anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
( b  .+  (
c  .+  z )
)  .-  c )  =  ( b  .+  ( ( c  .+  z )  .-  c
) ) )
118113, 117eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
( ( b  .+  c )  .+  z
)  .-  c )  =  ( b  .+  ( ( c  .+  z )  .-  c
) ) )
119118oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
( ( ( b 
.+  c )  .+  z )  .-  c
)  .-  b )  =  ( ( b 
.+  ( ( c 
.+  z )  .-  c ) )  .-  b ) )
120110, 119eqtr3d 2317 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
( ( b  .+  c )  .+  z
)  .-  ( b  .+  c ) )  =  ( ( b  .+  ( ( c  .+  z )  .-  c
) )  .-  b
) )
121120eqeq2d 2294 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  (
b  e.  X  /\  c  e.  X )
)  /\  z  e.  a )  ->  (
u  =  ( ( ( b  .+  c
)  .+  z )  .-  ( b  .+  c
) )  <->  u  =  ( ( b  .+  ( ( c  .+  z )  .-  c
) )  .-  b
) ) )
122121rexbidva 2560 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( E. z  e.  a  u  =  ( ( ( b  .+  c )  .+  z
)  .-  ( b  .+  c ) )  <->  E. z  e.  a  u  =  ( ( b  .+  ( ( c  .+  z )  .-  c
) )  .-  b
) ) )
123122abbidv 2397 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  ->  { u  |  E. z  e.  a  u  =  ( ( ( b  .+  c ) 
.+  z )  .-  ( b  .+  c
) ) }  =  { u  |  E. z  e.  a  u  =  ( ( b 
.+  ( ( c 
.+  z )  .-  c ) )  .-  b ) } )
12480, 97, 1233eqtr4a 2341 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  ->  { u  |  E. w  e.  ( c  .(+)  a ) u  =  ( ( b  .+  w )  .-  b
) }  =  {
u  |  E. z  e.  a  u  =  ( ( ( b 
.+  c )  .+  z )  .-  (
b  .+  c )
) } )
125 eqid 2283 . . . . . . . . 9  |-  ( w  e.  ( c  .(+)  a )  |->  ( ( b 
.+  w )  .-  b ) )  =  ( w  e.  ( c  .(+)  a )  |->  ( ( b  .+  w )  .-  b
) )
126125rnmpt 4925 . . . . . . . 8  |-  ran  (
w  e.  ( c 
.(+)  a )  |->  ( ( b  .+  w
)  .-  b )
)  =  { u  |  E. w  e.  ( c  .(+)  a )
u  =  ( ( b  .+  w ) 
.-  b ) }
127 eqid 2283 . . . . . . . . 9  |-  ( z  e.  a  |->  ( ( ( b  .+  c
)  .+  z )  .-  ( b  .+  c
) ) )  =  ( z  e.  a 
|->  ( ( ( b 
.+  c )  .+  z )  .-  (
b  .+  c )
) )
128127rnmpt 4925 . . . . . . . 8  |-  ran  (
z  e.  a  |->  ( ( ( b  .+  c )  .+  z
)  .-  ( b  .+  c ) ) )  =  { u  |  E. z  e.  a  u  =  ( ( ( b  .+  c
)  .+  z )  .-  ( b  .+  c
) ) }
129124, 126, 1283eqtr4g 2340 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  ->  ran  ( w  e.  ( c  .(+)  a )  |->  ( ( b  .+  w )  .-  b
) )  =  ran  ( z  e.  a 
|->  ( ( ( b 
.+  c )  .+  z )  .-  (
b  .+  c )
) ) )
13041ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  ->  .(+)  : ( X  X.  ( P pSyl  G )
) --> ( P pSyl  G
) )
131 fovrn 5990 . . . . . . . . 9  |-  ( ( 
.(+)  : ( X  X.  ( P pSyl  G )
) --> ( P pSyl  G
)  /\  c  e.  X  /\  a  e.  ( P pSyl  G ) )  ->  ( c  .(+)  a )  e.  ( P pSyl 
G ) )
132130, 81, 82, 131syl3anc 1182 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( c  .(+)  a )  e.  ( P pSyl  G
) )
133 simpr 447 . . . . . . . . . . . 12  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  -> 
y  =  ( c 
.(+)  a ) )
134 simpl 443 . . . . . . . . . . . . . 14  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  ->  x  =  b )
135134oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  -> 
( x  .+  z
)  =  ( b 
.+  z ) )
136135, 134oveq12d 5876 . . . . . . . . . . . 12  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  -> 
( ( x  .+  z )  .-  x
)  =  ( ( b  .+  z ) 
.-  b ) )
137133, 136mpteq12dv 4098 . . . . . . . . . . 11  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  -> 
( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ( z  e.  ( c 
.(+)  a )  |->  ( ( b  .+  z
)  .-  b )
) )
138 oveq2 5866 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
b  .+  z )  =  ( b  .+  w ) )
139138oveq1d 5873 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( b  .+  z
)  .-  b )  =  ( ( b 
.+  w )  .-  b ) )
140139cbvmptv 4111 . . . . . . . . . . 11  |-  ( z  e.  ( c  .(+)  a )  |->  ( ( b 
.+  z )  .-  b ) )  =  ( w  e.  ( c  .(+)  a )  |->  ( ( b  .+  w )  .-  b
) )
141137, 140syl6eq 2331 . . . . . . . . . 10  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  -> 
( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ( w  e.  ( c 
.(+)  a )  |->  ( ( b  .+  w
)  .-  b )
) )
142141rneqd 4906 . . . . . . . . 9  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  ->  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ran  ( w  e.  (
c  .(+)  a )  |->  ( ( b  .+  w
)  .-  b )
) )
143 ovex 5883 . . . . . . . . . . 11  |-  ( c 
.(+)  a )  e. 
_V
144143mptex 5746 . . . . . . . . . 10  |-  ( w  e.  ( c  .(+)  a )  |->  ( ( b 
.+  w )  .-  b ) )  e. 
_V
145144rnex 4942 . . . . . . . . 9  |-  ran  (
w  e.  ( c 
.(+)  a )  |->  ( ( b  .+  w
)  .-  b )
)  e.  _V
146142, 39, 145ovmpt2a 5978 . . . . . . . 8  |-  ( ( b  e.  X  /\  ( c  .(+)  a )  e.  ( P pSyl  G
) )  ->  (
b  .(+)  ( c  .(+)  a ) )  =  ran  ( w  e.  (
c  .(+)  a )  |->  ( ( b  .+  w
)  .-  b )
) )
147100, 132, 146syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( b  .(+)  ( c 
.(+)  a ) )  =  ran  ( w  e.  ( c  .(+)  a )  |->  ( ( b 
.+  w )  .-  b ) ) )
148 simpr 447 . . . . . . . . . . 11  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  y  =  a )
149 simpl 443 . . . . . . . . . . . . 13  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  x  =  ( b 
.+  c ) )
150149oveq1d 5873 . . . . . . . . . . . 12  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  ( x  .+  z
)  =  ( ( b  .+  c ) 
.+  z ) )
151150, 149oveq12d 5876 . . . . . . . . . . 11  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  ( ( x  .+  z )  .-  x
)  =  ( ( ( b  .+  c
)  .+  z )  .-  ( b  .+  c
) ) )
152148, 151mpteq12dv 4098 . . . . . . . . . 10  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ( z  e.  a  |->  ( ( ( b  .+  c )  .+  z
)  .-  ( b  .+  c ) ) ) )
153152rneqd 4906 . . . . . . . . 9  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) )  =  ran  ( z  e.  a  |->  ( ( ( b  .+  c ) 
.+  z )  .-  ( b  .+  c
) ) ) )
15453mptex 5746 . . . . . . . . . 10  |-  ( z  e.  a  |->  ( ( ( b  .+  c
)  .+  z )  .-  ( b  .+  c
) ) )  e. 
_V
155154rnex 4942 . . . . . . . . 9  |-  ran  (
z  e.  a  |->  ( ( ( b  .+  c )  .+  z
)  .-  ( b  .+  c ) ) )  e.  _V
156153, 39, 155ovmpt2a 5978 . . . . . . . 8  |-  ( ( ( b  .+  c
)  e.  X  /\  a  e.  ( P pSyl  G ) )  ->  (
( b  .+  c
)  .(+)  a )  =  ran  ( z  e.  a  |->  ( ( ( b  .+  c ) 
.+  z )  .-  ( b  .+  c
) ) ) )
157102, 82, 156syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( ( b  .+  c )  .(+)  a )  =  ran  ( z  e.  a  |->  ( ( ( b  .+  c
)  .+  z )  .-  ( b  .+  c
) ) ) )
158129, 147, 1573eqtr4rd 2326 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( P pSyl  G ) )  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( ( b  .+  c )  .(+)  a )  =  ( b  .(+)  ( c  .(+)  a )
) )
159158ralrimivva 2635 . . . . 5  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  A. b  e.  X  A. c  e.  X  ( (
b  .+  c )  .(+)  a )  =  ( b  .(+)  ( c  .(+)  a ) ) )
16076, 159jca 518 . . . 4  |-  ( (
ph  /\  a  e.  ( P pSyl  G )
)  ->  ( (
( 0g `  G
)  .(+)  a )  =  a  /\  A. b  e.  X  A. c  e.  X  ( (
b  .+  c )  .(+)  a )  =  ( b  .(+)  ( c  .(+)  a ) ) ) )
161160ralrimiva 2626 . . 3  |-  ( ph  ->  A. a  e.  ( P pSyl  G ) ( ( ( 0g `  G )  .(+)  a )  =  a  /\  A. b  e.  X  A. c  e.  X  (
( b  .+  c
)  .(+)  a )  =  ( b  .(+)  ( c 
.(+)  a ) ) ) )
16241, 161jca 518 . 2  |-  ( ph  ->  (  .(+)  : ( X  X.  ( P pSyl  G
) ) --> ( P pSyl 
G )  /\  A. a  e.  ( P pSyl  G ) ( ( ( 0g `  G ) 
.(+)  a )  =  a  /\  A. b  e.  X  A. c  e.  X  ( (
b  .+  c )  .(+)  a )  =  ( b  .(+)  ( c  .(+)  a ) ) ) ) )
1636, 13, 43isga 14745 . 2  |-  (  .(+)  e.  ( G  GrpAct  ( P pSyl 
G ) )  <->  ( ( G  e.  Grp  /\  ( P pSyl  G )  e.  _V )  /\  (  .(+)  : ( X  X.  ( P pSyl 
G ) ) --> ( P pSyl  G )  /\  A. a  e.  ( P pSyl 
G ) ( ( ( 0g `  G
)  .(+)  a )  =  a  /\  A. b  e.  X  A. c  e.  X  ( (
b  .+  c )  .(+)  a )  =  ( b  .(+)  ( c  .(+)  a ) ) ) ) ) )
1643, 162, 163sylanbrc 645 1  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  ( P pSyl  G )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   class class class wbr 4023    e. cmpt 4077    _I cid 4304    X. cxp 4687   ran crn 4690    |` cres 4691   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860    ~~ cen 6860   Fincfn 6863   ^cexp 11104   #chash 11337   Primecprime 12758    pCnt cpc 12889   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Grpcgrp 14362   -gcsg 14365  SubGrpcsubg 14615    GrpAct cga 14743   pSyl cslw 14843
This theorem is referenced by:  sylow3lem3  14940  sylow3lem5  14942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-eqg 14620  df-ghm 14681  df-ga 14744  df-od 14844  df-pgp 14846  df-slw 14847
  Copyright terms: Public domain W3C validator