MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem4 Unicode version

Theorem sylow3lem4 14957
Description: Lemma for sylow3 14960, first part. The number of Sylow subgroups is a divisor of the size of  G reduced by the size of a Sylow subgroup of  G. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x  |-  X  =  ( Base `  G
)
sylow3.g  |-  ( ph  ->  G  e.  Grp )
sylow3.xf  |-  ( ph  ->  X  e.  Fin )
sylow3.p  |-  ( ph  ->  P  e.  Prime )
sylow3lem1.a  |-  .+  =  ( +g  `  G )
sylow3lem1.d  |-  .-  =  ( -g `  G )
sylow3lem1.m  |-  .(+)  =  ( x  e.  X , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
sylow3lem2.k  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
sylow3lem2.h  |-  H  =  { u  e.  X  |  ( u  .(+)  K )  =  K }
sylow3lem2.n  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  K  <->  ( y  .+  x )  e.  K ) }
Assertion
Ref Expression
sylow3lem4  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  ||  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
Distinct variable groups:    x, u, y, z,  .-    u,  .(+) , x, y, z    x, H, y    u, K, x, y, z    u, N, z    u, X, x, y, z    u, G, x, y, z    ph, u, x, y, z    u,  .+ , x, y, z    u, P, x, y, z
Allowed substitution hints:    H( z, u)    N( x, y)

Proof of Theorem sylow3lem4
StepHypRef Expression
1 sylow3.x . . 3  |-  X  =  ( Base `  G
)
2 sylow3.g . . 3  |-  ( ph  ->  G  e.  Grp )
3 sylow3.xf . . 3  |-  ( ph  ->  X  e.  Fin )
4 sylow3.p . . 3  |-  ( ph  ->  P  e.  Prime )
5 sylow3lem1.a . . 3  |-  .+  =  ( +g  `  G )
6 sylow3lem1.d . . 3  |-  .-  =  ( -g `  G )
7 sylow3lem1.m . . 3  |-  .(+)  =  ( x  e.  X , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
8 sylow3lem2.k . . 3  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
9 sylow3lem2.h . . 3  |-  H  =  { u  e.  X  |  ( u  .(+)  K )  =  K }
10 sylow3lem2.n . . 3  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  K  <->  ( y  .+  x )  e.  K ) }
111, 2, 3, 4, 5, 6, 7, 8, 9, 10sylow3lem3 14956 . 2  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  =  ( # `  ( X /. ( G ~QG  N ) ) ) )
12 slwsubg 14937 . . . . . . . . . 10  |-  ( K  e.  ( P pSyl  G
)  ->  K  e.  (SubGrp `  G ) )
138, 12syl 15 . . . . . . . . 9  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
14 eqid 2296 . . . . . . . . . . 11  |-  ( Gs  N )  =  ( Gs  N )
1510, 1, 5, 14nmznsg 14677 . . . . . . . . . 10  |-  ( K  e.  (SubGrp `  G
)  ->  K  e.  (NrmSGrp `  ( Gs  N ) ) )
16 nsgsubg 14665 . . . . . . . . . 10  |-  ( K  e.  (NrmSGrp `  ( Gs  N ) )  ->  K  e.  (SubGrp `  ( Gs  N ) ) )
1715, 16syl 15 . . . . . . . . 9  |-  ( K  e.  (SubGrp `  G
)  ->  K  e.  (SubGrp `  ( Gs  N ) ) )
1813, 17syl 15 . . . . . . . 8  |-  ( ph  ->  K  e.  (SubGrp `  ( Gs  N ) ) )
1910, 1, 5nmzsubg 14674 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
202, 19syl 15 . . . . . . . . . 10  |-  ( ph  ->  N  e.  (SubGrp `  G ) )
2114subgbas 14641 . . . . . . . . . 10  |-  ( N  e.  (SubGrp `  G
)  ->  N  =  ( Base `  ( Gs  N
) ) )
2220, 21syl 15 . . . . . . . . 9  |-  ( ph  ->  N  =  ( Base `  ( Gs  N ) ) )
231subgss 14638 . . . . . . . . . . 11  |-  ( N  e.  (SubGrp `  G
)  ->  N  C_  X
)
2420, 23syl 15 . . . . . . . . . 10  |-  ( ph  ->  N  C_  X )
25 ssfi 7099 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  N  C_  X )  ->  N  e.  Fin )
263, 24, 25syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  N  e.  Fin )
2722, 26eqeltrrd 2371 . . . . . . . 8  |-  ( ph  ->  ( Base `  ( Gs  N ) )  e. 
Fin )
28 eqid 2296 . . . . . . . . 9  |-  ( Base `  ( Gs  N ) )  =  ( Base `  ( Gs  N ) )
2928lagsubg 14695 . . . . . . . 8  |-  ( ( K  e.  (SubGrp `  ( Gs  N ) )  /\  ( Base `  ( Gs  N
) )  e.  Fin )  ->  ( # `  K
)  ||  ( # `  ( Base `  ( Gs  N ) ) ) )
3018, 27, 29syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( # `  K
)  ||  ( # `  ( Base `  ( Gs  N ) ) ) )
3122fveq2d 5545 . . . . . . 7  |-  ( ph  ->  ( # `  N
)  =  ( # `  ( Base `  ( Gs  N ) ) ) )
3230, 31breqtrrd 4065 . . . . . 6  |-  ( ph  ->  ( # `  K
)  ||  ( # `  N
) )
33 eqid 2296 . . . . . . . . . . . 12  |-  ( 0g
`  G )  =  ( 0g `  G
)
3433subg0cl 14645 . . . . . . . . . . 11  |-  ( K  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  K
)
3513, 34syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  G
)  e.  K )
36 ne0i 3474 . . . . . . . . . 10  |-  ( ( 0g `  G )  e.  K  ->  K  =/=  (/) )
3735, 36syl 15 . . . . . . . . 9  |-  ( ph  ->  K  =/=  (/) )
381subgss 14638 . . . . . . . . . . . 12  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
3913, 38syl 15 . . . . . . . . . . 11  |-  ( ph  ->  K  C_  X )
40 ssfi 7099 . . . . . . . . . . 11  |-  ( ( X  e.  Fin  /\  K  C_  X )  ->  K  e.  Fin )
413, 39, 40syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  K  e.  Fin )
42 hashnncl 11370 . . . . . . . . . 10  |-  ( K  e.  Fin  ->  (
( # `  K )  e.  NN  <->  K  =/=  (/) ) )
4341, 42syl 15 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  K
)  e.  NN  <->  K  =/=  (/) ) )
4437, 43mpbird 223 . . . . . . . 8  |-  ( ph  ->  ( # `  K
)  e.  NN )
4544nnzd 10132 . . . . . . 7  |-  ( ph  ->  ( # `  K
)  e.  ZZ )
46 hashcl 11366 . . . . . . . . 9  |-  ( N  e.  Fin  ->  ( # `
 N )  e. 
NN0 )
4726, 46syl 15 . . . . . . . 8  |-  ( ph  ->  ( # `  N
)  e.  NN0 )
4847nn0zd 10131 . . . . . . 7  |-  ( ph  ->  ( # `  N
)  e.  ZZ )
49 pwfi 7167 . . . . . . . . . . 11  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
503, 49sylib 188 . . . . . . . . . 10  |-  ( ph  ->  ~P X  e.  Fin )
51 eqid 2296 . . . . . . . . . . . . 13  |-  ( G ~QG  N )  =  ( G ~QG  N )
521, 51eqger 14683 . . . . . . . . . . . 12  |-  ( N  e.  (SubGrp `  G
)  ->  ( G ~QG  N
)  Er  X )
5320, 52syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( G ~QG  N )  Er  X
)
5453qsss 6736 . . . . . . . . . 10  |-  ( ph  ->  ( X /. ( G ~QG  N ) )  C_  ~P X )
55 ssfi 7099 . . . . . . . . . 10  |-  ( ( ~P X  e.  Fin  /\  ( X /. ( G ~QG  N ) )  C_  ~P X )  ->  ( X /. ( G ~QG  N ) )  e.  Fin )
5650, 54, 55syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( X /. ( G ~QG  N ) )  e. 
Fin )
57 hashcl 11366 . . . . . . . . 9  |-  ( ( X /. ( G ~QG  N ) )  e.  Fin  ->  ( # `  ( X /. ( G ~QG  N ) ) )  e.  NN0 )
5856, 57syl 15 . . . . . . . 8  |-  ( ph  ->  ( # `  ( X /. ( G ~QG  N ) ) )  e.  NN0 )
5958nn0zd 10131 . . . . . . 7  |-  ( ph  ->  ( # `  ( X /. ( G ~QG  N ) ) )  e.  ZZ )
60 dvdscmul 12571 . . . . . . 7  |-  ( ( ( # `  K
)  e.  ZZ  /\  ( # `  N )  e.  ZZ  /\  ( # `
 ( X /. ( G ~QG  N ) ) )  e.  ZZ )  -> 
( ( # `  K
)  ||  ( # `  N
)  ->  ( ( # `
 ( X /. ( G ~QG  N ) ) )  x.  ( # `  K
) )  ||  (
( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 N ) ) ) )
6145, 48, 59, 60syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( ( # `  K
)  ||  ( # `  N
)  ->  ( ( # `
 ( X /. ( G ~QG  N ) ) )  x.  ( # `  K
) )  ||  (
( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 N ) ) ) )
6232, 61mpd 14 . . . . 5  |-  ( ph  ->  ( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 K ) ) 
||  ( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `  N
) ) )
63 hashcl 11366 . . . . . . . . 9  |-  ( X  e.  Fin  ->  ( # `
 X )  e. 
NN0 )
643, 63syl 15 . . . . . . . 8  |-  ( ph  ->  ( # `  X
)  e.  NN0 )
6564nn0cnd 10036 . . . . . . 7  |-  ( ph  ->  ( # `  X
)  e.  CC )
6644nncnd 9778 . . . . . . 7  |-  ( ph  ->  ( # `  K
)  e.  CC )
6744nnne0d 9806 . . . . . . 7  |-  ( ph  ->  ( # `  K
)  =/=  0 )
6865, 66, 67divcan1d 9553 . . . . . 6  |-  ( ph  ->  ( ( ( # `  X )  /  ( # `
 K ) )  x.  ( # `  K
) )  =  (
# `  X )
)
691, 51, 20, 3lagsubg2 14694 . . . . . 6  |-  ( ph  ->  ( # `  X
)  =  ( (
# `  ( X /. ( G ~QG  N ) ) )  x.  ( # `  N
) ) )
7068, 69eqtrd 2328 . . . . 5  |-  ( ph  ->  ( ( ( # `  X )  /  ( # `
 K ) )  x.  ( # `  K
) )  =  ( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 N ) ) )
7162, 70breqtrrd 4065 . . . 4  |-  ( ph  ->  ( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 K ) ) 
||  ( ( (
# `  X )  /  ( # `  K
) )  x.  ( # `
 K ) ) )
721lagsubg 14695 . . . . . . 7  |-  ( ( K  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 K )  ||  ( # `  X ) )
7313, 3, 72syl2anc 642 . . . . . 6  |-  ( ph  ->  ( # `  K
)  ||  ( # `  X
) )
7464nn0zd 10131 . . . . . . 7  |-  ( ph  ->  ( # `  X
)  e.  ZZ )
75 dvdsval2 12550 . . . . . . 7  |-  ( ( ( # `  K
)  e.  ZZ  /\  ( # `  K )  =/=  0  /\  ( # `
 X )  e.  ZZ )  ->  (
( # `  K ) 
||  ( # `  X
)  <->  ( ( # `  X )  /  ( # `
 K ) )  e.  ZZ ) )
7645, 67, 74, 75syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( ( # `  K
)  ||  ( # `  X
)  <->  ( ( # `  X )  /  ( # `
 K ) )  e.  ZZ ) )
7773, 76mpbid 201 . . . . 5  |-  ( ph  ->  ( ( # `  X
)  /  ( # `  K ) )  e.  ZZ )
78 dvdsmulcr 12574 . . . . 5  |-  ( ( ( # `  ( X /. ( G ~QG  N ) ) )  e.  ZZ  /\  ( ( # `  X
)  /  ( # `  K ) )  e.  ZZ  /\  ( (
# `  K )  e.  ZZ  /\  ( # `  K )  =/=  0
) )  ->  (
( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 K ) ) 
||  ( ( (
# `  X )  /  ( # `  K
) )  x.  ( # `
 K ) )  <-> 
( # `  ( X /. ( G ~QG  N ) ) )  ||  (
( # `  X )  /  ( # `  K
) ) ) )
7959, 77, 45, 67, 78syl112anc 1186 . . . 4  |-  ( ph  ->  ( ( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `  K
) )  ||  (
( ( # `  X
)  /  ( # `  K ) )  x.  ( # `  K
) )  <->  ( # `  ( X /. ( G ~QG  N ) ) )  ||  (
( # `  X )  /  ( # `  K
) ) ) )
8071, 79mpbid 201 . . 3  |-  ( ph  ->  ( # `  ( X /. ( G ~QG  N ) ) )  ||  (
( # `  X )  /  ( # `  K
) ) )
811, 3, 8slwhash 14951 . . . 4  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
8281oveq2d 5890 . . 3  |-  ( ph  ->  ( ( # `  X
)  /  ( # `  K ) )  =  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
8380, 82breqtrd 4063 . 2  |-  ( ph  ->  ( # `  ( X /. ( G ~QG  N ) ) )  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
8411, 83eqbrtrd 4059 1  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  ||  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   {crab 2560    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   class class class wbr 4039    e. cmpt 4093   ran crn 4706   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876    Er wer 6673   /.cqs 6675   Fincfn 6879   0cc0 8753    x. cmul 8758    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   ^cexp 11120   #chash 11353    || cdivides 12547   Primecprime 12774    pCnt cpc 12905   Basecbs 13164   ↾s cress 13165   +g cplusg 13224   0gc0g 13416   Grpcgrp 14378   -gcsg 14381  SubGrpcsubg 14631  NrmSGrpcnsg 14632   ~QG cqg 14633   pSyl cslw 14859
This theorem is referenced by:  sylow3  14960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-nsg 14635  df-eqg 14636  df-ghm 14697  df-ga 14760  df-od 14860  df-pgp 14862  df-slw 14863
  Copyright terms: Public domain W3C validator