MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem6 Structured version   Unicode version

Theorem sylow3lem6 15268
Description: Lemma for sylow3 15269, second part. Using the lemma sylow2a 15255, show that the number of sylow subgroups is equivalent  mod  P to the number of fixed points under the group action. But  K is the unique element of the set of Sylow subgroups that is fixed under the group action, so there is exactly one fixed point and so  ( ( # `  ( P pSyl  G ) )  mod  P )  =  1. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x  |-  X  =  ( Base `  G
)
sylow3.g  |-  ( ph  ->  G  e.  Grp )
sylow3.xf  |-  ( ph  ->  X  e.  Fin )
sylow3.p  |-  ( ph  ->  P  e.  Prime )
sylow3lem5.a  |-  .+  =  ( +g  `  G )
sylow3lem5.d  |-  .-  =  ( -g `  G )
sylow3lem5.k  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
sylow3lem5.m  |-  .(+)  =  ( x  e.  K , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
sylow3lem6.n  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) }
Assertion
Ref Expression
sylow3lem6  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  mod 
P )  =  1 )
Distinct variable groups:    x, y,
z,  .-    x, s, y, z,  .(+)    K, s, x, y, z    z, N   
x, X, y, z    G, s, x, y, z    ph, s, x, y, z   
x,  .+ , y, z    P, s, x, y, z
Allowed substitution hints:    .+ ( s)    .- ( s)    N( x, y, s)    X( s)

Proof of Theorem sylow3lem6
Dummy variables  w  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . . . 5  |-  ( Base `  ( Gs  K ) )  =  ( Base `  ( Gs  K ) )
2 sylow3.x . . . . . 6  |-  X  =  ( Base `  G
)
3 sylow3.g . . . . . 6  |-  ( ph  ->  G  e.  Grp )
4 sylow3.xf . . . . . 6  |-  ( ph  ->  X  e.  Fin )
5 sylow3.p . . . . . 6  |-  ( ph  ->  P  e.  Prime )
6 sylow3lem5.a . . . . . 6  |-  .+  =  ( +g  `  G )
7 sylow3lem5.d . . . . . 6  |-  .-  =  ( -g `  G )
8 sylow3lem5.k . . . . . 6  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
9 sylow3lem5.m . . . . . 6  |-  .(+)  =  ( x  e.  K , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
102, 3, 4, 5, 6, 7, 8, 9sylow3lem5 15267 . . . . 5  |-  ( ph  -> 
.(+)  e.  ( ( Gs  K )  GrpAct  ( P pSyl 
G ) ) )
11 eqid 2438 . . . . . . 7  |-  ( Gs  K )  =  ( Gs  K )
1211slwpgp 15249 . . . . . 6  |-  ( K  e.  ( P pSyl  G
)  ->  P pGrp  ( Gs  K ) )
138, 12syl 16 . . . . 5  |-  ( ph  ->  P pGrp  ( Gs  K ) )
14 slwsubg 15246 . . . . . . . 8  |-  ( K  e.  ( P pSyl  G
)  ->  K  e.  (SubGrp `  G ) )
158, 14syl 16 . . . . . . 7  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
1611subgbas 14950 . . . . . . 7  |-  ( K  e.  (SubGrp `  G
)  ->  K  =  ( Base `  ( Gs  K
) ) )
1715, 16syl 16 . . . . . 6  |-  ( ph  ->  K  =  ( Base `  ( Gs  K ) ) )
182subgss 14947 . . . . . . . 8  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
1915, 18syl 16 . . . . . . 7  |-  ( ph  ->  K  C_  X )
20 ssfi 7331 . . . . . . 7  |-  ( ( X  e.  Fin  /\  K  C_  X )  ->  K  e.  Fin )
214, 19, 20syl2anc 644 . . . . . 6  |-  ( ph  ->  K  e.  Fin )
2217, 21eqeltrrd 2513 . . . . 5  |-  ( ph  ->  ( Base `  ( Gs  K ) )  e. 
Fin )
23 pwfi 7404 . . . . . . 7  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
244, 23sylib 190 . . . . . 6  |-  ( ph  ->  ~P X  e.  Fin )
25 slwsubg 15246 . . . . . . . . 9  |-  ( x  e.  ( P pSyl  G
)  ->  x  e.  (SubGrp `  G ) )
262subgss 14947 . . . . . . . . 9  |-  ( x  e.  (SubGrp `  G
)  ->  x  C_  X
)
2725, 26syl 16 . . . . . . . 8  |-  ( x  e.  ( P pSyl  G
)  ->  x  C_  X
)
28 vex 2961 . . . . . . . . 9  |-  x  e. 
_V
2928elpw 3807 . . . . . . . 8  |-  ( x  e.  ~P X  <->  x  C_  X
)
3027, 29sylibr 205 . . . . . . 7  |-  ( x  e.  ( P pSyl  G
)  ->  x  e.  ~P X )
3130ssriv 3354 . . . . . 6  |-  ( P pSyl 
G )  C_  ~P X
32 ssfi 7331 . . . . . 6  |-  ( ( ~P X  e.  Fin  /\  ( P pSyl  G ) 
C_  ~P X )  -> 
( P pSyl  G )  e.  Fin )
3324, 31, 32sylancl 645 . . . . 5  |-  ( ph  ->  ( P pSyl  G )  e.  Fin )
34 eqid 2438 . . . . 5  |-  { s  e.  ( P pSyl  G
)  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s }  =  { s  e.  ( P pSyl  G )  | 
A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s }
35 eqid 2438 . . . . 5  |-  { <. z ,  w >.  |  ( { z ,  w }  C_  ( P pSyl  G
)  /\  E. h  e.  ( Base `  ( Gs  K ) ) ( h  .(+)  z )  =  w ) }  =  { <. z ,  w >.  |  ( { z ,  w }  C_  ( P pSyl  G )  /\  E. h  e.  (
Base `  ( Gs  K
) ) ( h 
.(+)  z )  =  w ) }
361, 10, 13, 22, 33, 34, 35sylow2a 15255 . . . 4  |-  ( ph  ->  P  ||  ( (
# `  ( P pSyl  G ) )  -  ( # `
 { s  e.  ( P pSyl  G )  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } ) ) )
37 eqcom 2440 . . . . . . . . . . . . . 14  |-  ( ran  ( z  e.  s 
|->  ( ( g  .+  z )  .-  g
) )  =  s  <-> 
s  =  ran  (
z  e.  s  |->  ( ( g  .+  z
)  .-  g )
) )
3819adantr 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  K  C_  X
)
3938sselda 3350 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  g  e.  X )
4039biantrurd 496 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
s  =  ran  (
z  e.  s  |->  ( ( g  .+  z
)  .-  g )
)  <->  ( g  e.  X  /\  s  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) ) ) )
4137, 40syl5bb 250 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  ( ran  ( z  e.  s 
|->  ( ( g  .+  z )  .-  g
) )  =  s  <-> 
( g  e.  X  /\  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z )  .-  g
) ) ) ) )
42 simpr 449 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  g  e.  K )
43 simplr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  s  e.  ( P pSyl  G ) )
44 simpr 449 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  g  /\  y  =  s )  ->  y  =  s )
45 simpl 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  g  /\  y  =  s )  ->  x  =  g )
4645oveq1d 6098 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  g  /\  y  =  s )  ->  ( x  .+  z
)  =  ( g 
.+  z ) )
4746, 45oveq12d 6101 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  g  /\  y  =  s )  ->  ( ( x  .+  z )  .-  x
)  =  ( ( g  .+  z ) 
.-  g ) )
4844, 47mpteq12dv 4289 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  g  /\  y  =  s )  ->  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ( z  e.  s  |->  ( ( g  .+  z
)  .-  g )
) )
4948rneqd 5099 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  g  /\  y  =  s )  ->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) )  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) )
50 vex 2961 . . . . . . . . . . . . . . . . . 18  |-  s  e. 
_V
5150mptex 5968 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  s  |->  ( ( g  .+  z ) 
.-  g ) )  e.  _V
5251rnex 5135 . . . . . . . . . . . . . . . 16  |-  ran  (
z  e.  s  |->  ( ( g  .+  z
)  .-  g )
)  e.  _V
5349, 9, 52ovmpt2a 6206 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  K  /\  s  e.  ( P pSyl  G ) )  ->  (
g  .(+)  s )  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) )
5442, 43, 53syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
g  .(+)  s )  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) )
5554eqeq1d 2446 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
( g  .(+)  s )  =  s  <->  ran  ( z  e.  s  |->  ( ( g  .+  z ) 
.-  g ) )  =  s ) )
56 slwsubg 15246 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( P pSyl  G
)  ->  s  e.  (SubGrp `  G ) )
5756ad2antlr 709 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  s  e.  (SubGrp `  G )
)
58 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( z  e.  s  |->  ( ( g  .+  z ) 
.-  g ) )  =  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) )
59 sylow3lem6.n . . . . . . . . . . . . . . 15  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) }
602, 6, 7, 58, 59conjnmzb 15042 . . . . . . . . . . . . . 14  |-  ( s  e.  (SubGrp `  G
)  ->  ( g  e.  N  <->  ( g  e.  X  /\  s  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) ) ) )
6157, 60syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
g  e.  N  <->  ( g  e.  X  /\  s  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) ) ) )
6241, 55, 613bitr4d 278 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
( g  .(+)  s )  =  s  <->  g  e.  N ) )
6362ralbidva 2723 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  K  (
g  .(+)  s )  =  s  <->  A. g  e.  K  g  e.  N )
)
64 dfss3 3340 . . . . . . . . . . 11  |-  ( K 
C_  N  <->  A. g  e.  K  g  e.  N )
6563, 64syl6bbr 256 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  K  (
g  .(+)  s )  =  s  <->  K  C_  N ) )
6617adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  K  =  ( Base `  ( Gs  K
) ) )
6766raleqdv 2912 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  K  (
g  .(+)  s )  =  s  <->  A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s ) )
68 eqid 2438 . . . . . . . . . . . . 13  |-  ( Base `  ( Gs  N ) )  =  ( Base `  ( Gs  N ) )
693ad2antrr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  G  e.  Grp )
7059, 2, 6nmzsubg 14983 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
7169, 70syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  e.  (SubGrp `  G )
)
72 eqid 2438 . . . . . . . . . . . . . . . 16  |-  ( Gs  N )  =  ( Gs  N )
7372subgbas 14950 . . . . . . . . . . . . . . 15  |-  ( N  e.  (SubGrp `  G
)  ->  N  =  ( Base `  ( Gs  N
) ) )
7471, 73syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  =  ( Base `  ( Gs  N ) ) )
754ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  X  e.  Fin )
762subgss 14947 . . . . . . . . . . . . . . . 16  |-  ( N  e.  (SubGrp `  G
)  ->  N  C_  X
)
7771, 76syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  C_  X )
78 ssfi 7331 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  Fin  /\  N  C_  X )  ->  N  e.  Fin )
7975, 77, 78syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  e.  Fin )
8074, 79eqeltrrd 2513 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  ( Base `  ( Gs  N ) )  e.  Fin )
818ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  K  e.  ( P pSyl  G ) )
82 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  K  C_  N )
8372subgslw 15252 . . . . . . . . . . . . . 14  |-  ( ( N  e.  (SubGrp `  G )  /\  K  e.  ( P pSyl  G )  /\  K  C_  N
)  ->  K  e.  ( P pSyl  ( Gs  N
) ) )
8471, 81, 82, 83syl3anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  K  e.  ( P pSyl  ( Gs  N ) ) )
85 simplr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  ( P pSyl  G ) )
8656ad2antlr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  (SubGrp `  G )
)
8759, 2, 6ssnmz 14984 . . . . . . . . . . . . . . 15  |-  ( s  e.  (SubGrp `  G
)  ->  s  C_  N )
8886, 87syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  C_  N )
8972subgslw 15252 . . . . . . . . . . . . . 14  |-  ( ( N  e.  (SubGrp `  G )  /\  s  e.  ( P pSyl  G )  /\  s  C_  N
)  ->  s  e.  ( P pSyl  ( Gs  N
) ) )
9071, 85, 88, 89syl3anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  ( P pSyl  ( Gs  N ) ) )
91 fvex 5744 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  e.  _V
922, 91eqeltri 2508 . . . . . . . . . . . . . . . 16  |-  X  e. 
_V
9392rabex 4356 . . . . . . . . . . . . . . 15  |-  { x  e.  X  |  A. y  e.  X  (
( x  .+  y
)  e.  s  <->  ( y  .+  x )  e.  s ) }  e.  _V
9459, 93eqeltri 2508 . . . . . . . . . . . . . 14  |-  N  e. 
_V
9572, 6ressplusg 13573 . . . . . . . . . . . . . 14  |-  ( N  e.  _V  ->  .+  =  ( +g  `  ( Gs  N ) ) )
9694, 95ax-mp 8 . . . . . . . . . . . . 13  |-  .+  =  ( +g  `  ( Gs  N ) )
97 eqid 2438 . . . . . . . . . . . . 13  |-  ( -g `  ( Gs  N ) )  =  ( -g `  ( Gs  N ) )
9868, 80, 84, 90, 96, 97sylow2 15262 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  E. g  e.  ( Base `  ( Gs  N ) ) K  =  ran  ( z  e.  s  |->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) )
9959, 2, 6, 72nmznsg 14986 . . . . . . . . . . . . . . . 16  |-  ( s  e.  (SubGrp `  G
)  ->  s  e.  (NrmSGrp `  ( Gs  N ) ) )
10086, 99syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  (NrmSGrp `  ( Gs  N
) ) )
101 eqid 2438 . . . . . . . . . . . . . . . 16  |-  ( z  e.  s  |->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) )  =  ( z  e.  s  |->  ( ( g  .+  z
) ( -g `  ( Gs  N ) ) g ) )
10268, 96, 97, 101conjnsg 15043 . . . . . . . . . . . . . . 15  |-  ( ( s  e.  (NrmSGrp `  ( Gs  N ) )  /\  g  e.  ( Base `  ( Gs  N ) ) )  ->  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) )
103100, 102sylan 459 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  /\  g  e.  ( Base `  ( Gs  N ) ) )  ->  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) )
104 eqeq2 2447 . . . . . . . . . . . . . 14  |-  ( K  =  ran  ( z  e.  s  |->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) )  ->  (
s  =  K  <->  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) ) )
105103, 104syl5ibrcom 215 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  /\  g  e.  ( Base `  ( Gs  N ) ) )  ->  ( K  =  ran  ( z  e.  s  |->  ( ( g 
.+  z ) (
-g `  ( Gs  N
) ) g ) )  ->  s  =  K ) )
106105rexlimdva 2832 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  ( E. g  e.  ( Base `  ( Gs  N ) ) K  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) )  ->  s  =  K ) )
10798, 106mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  =  K )
108 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  s  =  K )
10915ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  K  e.  (SubGrp `  G )
)
110108, 109eqeltrd 2512 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  s  e.  (SubGrp `  G )
)
111110, 87syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  s  C_  N )
112108, 111eqsstr3d 3385 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  K  C_  N )
113107, 112impbida 807 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( K  C_  N  <->  s  =  K ) )
11465, 67, 1133bitr3d 276 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s  <->  s  =  K ) )
115114rabbidva 2949 . . . . . . . 8  |-  ( ph  ->  { s  e.  ( P pSyl  G )  | 
A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s }  =  {
s  e.  ( P pSyl 
G )  |  s  =  K } )
116 rabsn 3875 . . . . . . . . 9  |-  ( K  e.  ( P pSyl  G
)  ->  { s  e.  ( P pSyl  G )  |  s  =  K }  =  { K } )
1178, 116syl 16 . . . . . . . 8  |-  ( ph  ->  { s  e.  ( P pSyl  G )  |  s  =  K }  =  { K } )
118115, 117eqtrd 2470 . . . . . . 7  |-  ( ph  ->  { s  e.  ( P pSyl  G )  | 
A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s }  =  { K } )
119118fveq2d 5734 . . . . . 6  |-  ( ph  ->  ( # `  {
s  e.  ( P pSyl 
G )  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } )  =  ( # `  { K } ) )
120 hashsng 11649 . . . . . . 7  |-  ( K  e.  ( P pSyl  G
)  ->  ( # `  { K } )  =  1 )
1218, 120syl 16 . . . . . 6  |-  ( ph  ->  ( # `  { K } )  =  1 )
122119, 121eqtrd 2470 . . . . 5  |-  ( ph  ->  ( # `  {
s  e.  ( P pSyl 
G )  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } )  =  1 )
123122oveq2d 6099 . . . 4  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  -  ( # `  { s  e.  ( P pSyl  G
)  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } ) )  =  ( (
# `  ( P pSyl  G ) )  -  1 ) )
12436, 123breqtrd 4238 . . 3  |-  ( ph  ->  P  ||  ( (
# `  ( P pSyl  G ) )  -  1 ) )
125 prmnn 13084 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
1265, 125syl 16 . . . 4  |-  ( ph  ->  P  e.  NN )
127 hashcl 11641 . . . . . 6  |-  ( ( P pSyl  G )  e. 
Fin  ->  ( # `  ( P pSyl  G ) )  e. 
NN0 )
12833, 127syl 16 . . . . 5  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  e. 
NN0 )
129128nn0zd 10375 . . . 4  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  e.  ZZ )
130 1z 10313 . . . . 5  |-  1  e.  ZZ
131130a1i 11 . . . 4  |-  ( ph  ->  1  e.  ZZ )
132 moddvds 12861 . . . 4  |-  ( ( P  e.  NN  /\  ( # `  ( P pSyl 
G ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( # `  ( P pSyl  G ) )  mod 
P )  =  ( 1  mod  P )  <-> 
P  ||  ( ( # `
 ( P pSyl  G
) )  -  1 ) ) )
133126, 129, 131, 132syl3anc 1185 . . 3  |-  ( ph  ->  ( ( ( # `  ( P pSyl  G ) )  mod  P )  =  ( 1  mod 
P )  <->  P  ||  (
( # `  ( P pSyl 
G ) )  - 
1 ) ) )
134124, 133mpbird 225 . 2  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  mod 
P )  =  ( 1  mod  P ) )
135 prmuz2 13099 . . 3  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
136 eluz2b2 10550 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
137 nnre 10009 . . . . 5  |-  ( P  e.  NN  ->  P  e.  RR )
138 1mod 11275 . . . . 5  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
139137, 138sylan 459 . . . 4  |-  ( ( P  e.  NN  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
140136, 139sylbi 189 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( 1  mod  P )  =  1 )
1415, 135, 1403syl 19 . 2  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
142134, 141eqtrd 2470 1  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  mod 
P )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   {crab 2711   _Vcvv 2958    C_ wss 3322   ~Pcpw 3801   {csn 3816   {cpr 3817   class class class wbr 4214   {copab 4267    e. cmpt 4268   ran crn 4881   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085   Fincfn 7111   RRcr 8991   1c1 8993    < clt 9122    - cmin 9293   NNcn 10002   2c2 10051   NN0cn0 10223   ZZcz 10284   ZZ>=cuz 10490    mod cmo 11252   #chash 11620    || cdivides 12854   Primecprime 13081   Basecbs 13471   ↾s cress 13472   +g cplusg 13531   Grpcgrp 14687   -gcsg 14690  SubGrpcsubg 14940  NrmSGrpcnsg 14941   pGrp cpgp 15167   pSyl cslw 15168
This theorem is referenced by:  sylow3  15269
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-disj 4185  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-omul 6731  df-er 6907  df-ec 6909  df-qs 6913  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-oi 7481  df-card 7828  df-acn 7831  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-q 10577  df-rp 10615  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-clim 12284  df-sum 12482  df-dvds 12855  df-gcd 13009  df-prm 13082  df-pc 13213  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-0g 13729  df-mnd 14692  df-submnd 14741  df-grp 14814  df-minusg 14815  df-sbg 14816  df-mulg 14817  df-subg 14943  df-nsg 14944  df-eqg 14945  df-ghm 15006  df-ga 15069  df-od 15169  df-pgp 15171  df-slw 15172
  Copyright terms: Public domain W3C validator