MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtgp Structured version   Unicode version

Theorem symgtgp 18123
Description: The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
symgtgp.g  |-  G  =  ( SymGrp `  A )
Assertion
Ref Expression
symgtgp  |-  ( A  e.  V  ->  G  e.  TopGrp )

Proof of Theorem symgtgp
Dummy variables  t 
f  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgtgp.g . . 3  |-  G  =  ( SymGrp `  A )
21symggrp 15095 . 2  |-  ( A  e.  V  ->  G  e.  Grp )
3 grpmnd 14809 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Mnd )
42, 3syl 16 . . 3  |-  ( A  e.  V  ->  G  e.  Mnd )
5 eqid 2435 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
61, 5symgtopn 15100 . . . . 5  |-  ( A  e.  V  ->  (
( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )  =  ( TopOpen `  G )
)
7 distopon 17053 . . . . . . 7  |-  ( A  e.  V  ->  ~P A  e.  (TopOn `  A
) )
8 eqid 2435 . . . . . . . 8  |-  ( Xt_ `  ( A  X.  { ~P A } ) )  =  ( Xt_ `  ( A  X.  { ~P A } ) )
98pttoponconst 17621 . . . . . . 7  |-  ( ( A  e.  V  /\  ~P A  e.  (TopOn `  A ) )  -> 
( Xt_ `  ( A  X.  { ~P A } ) )  e.  (TopOn `  ( A  ^m  A ) ) )
107, 9mpdan 650 . . . . . 6  |-  ( A  e.  V  ->  ( Xt_ `  ( A  X.  { ~P A } ) )  e.  (TopOn `  ( A  ^m  A ) ) )
111, 5elsymgbas 15089 . . . . . . . 8  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G )  <->  x : A
-1-1-onto-> A ) )
12 f1of 5666 . . . . . . . . 9  |-  ( x : A -1-1-onto-> A  ->  x : A
--> A )
13 elmapg 7023 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( x  e.  ( A  ^m  A )  <-> 
x : A --> A ) )
1413anidms 627 . . . . . . . . 9  |-  ( A  e.  V  ->  (
x  e.  ( A  ^m  A )  <->  x : A
--> A ) )
1512, 14syl5ibr 213 . . . . . . . 8  |-  ( A  e.  V  ->  (
x : A -1-1-onto-> A  ->  x  e.  ( A  ^m  A ) ) )
1611, 15sylbid 207 . . . . . . 7  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G )  ->  x  e.  ( A  ^m  A
) ) )
1716ssrdv 3346 . . . . . 6  |-  ( A  e.  V  ->  ( Base `  G )  C_  ( A  ^m  A ) )
18 resttopon 17217 . . . . . 6  |-  ( ( ( Xt_ `  ( A  X.  { ~P A } ) )  e.  (TopOn `  ( A  ^m  A ) )  /\  ( Base `  G )  C_  ( A  ^m  A
) )  ->  (
( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )  e.  (TopOn `  ( Base `  G ) ) )
1910, 17, 18syl2anc 643 . . . . 5  |-  ( A  e.  V  ->  (
( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )  e.  (TopOn `  ( Base `  G ) ) )
206, 19eqeltrrd 2510 . . . 4  |-  ( A  e.  V  ->  ( TopOpen
`  G )  e.  (TopOn `  ( Base `  G ) ) )
21 eqid 2435 . . . . 5  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
225, 21istps 16993 . . . 4  |-  ( G  e.  TopSp 
<->  ( TopOpen `  G )  e.  (TopOn `  ( Base `  G ) ) )
2320, 22sylibr 204 . . 3  |-  ( A  e.  V  ->  G  e.  TopSp )
24 eqid 2435 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
251, 5, 24symgplusg 15091 . . . . . . 7  |-  ( +g  `  G )  =  ( x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  ( x  o.  y ) )
26 eqid 2435 . . . . . . . 8  |-  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) )  =  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) )
27 distop 17052 . . . . . . . . 9  |-  ( A  e.  V  ->  ~P A  e.  Top )
28 eqid 2435 . . . . . . . . . 10  |-  ( ~P A  ^ k o  ~P A )  =  ( ~P A  ^ k o  ~P A
)
2928xkotopon 17624 . . . . . . . . 9  |-  ( ( ~P A  e.  Top  /\ 
~P A  e.  Top )  ->  ( ~P A  ^ k o  ~P A
)  e.  (TopOn `  ( ~P A  Cn  ~P A ) ) )
3027, 27, 29syl2anc 643 . . . . . . . 8  |-  ( A  e.  V  ->  ( ~P A  ^ k o  ~P A )  e.  (TopOn `  ( ~P A  Cn  ~P A ) ) )
31 cndis 17347 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ~P A  e.  (TopOn `  A ) )  -> 
( ~P A  Cn  ~P A )  =  ( A  ^m  A ) )
327, 31mpdan 650 . . . . . . . . 9  |-  ( A  e.  V  ->  ( ~P A  Cn  ~P A
)  =  ( A  ^m  A ) )
3317, 32sseqtr4d 3377 . . . . . . . 8  |-  ( A  e.  V  ->  ( Base `  G )  C_  ( ~P A  Cn  ~P A ) )
34 disllycmp 17553 . . . . . . . . . 10  |-  ( A  e.  V  ->  ~P A  e. Locally  Comp )
35 llynlly 17532 . . . . . . . . . 10  |-  ( ~P A  e. Locally  Comp  ->  ~P A  e. 𝑛Locally  Comp )
3634, 35syl 16 . . . . . . . . 9  |-  ( A  e.  V  ->  ~P A  e. 𝑛Locally  Comp )
37 eqid 2435 . . . . . . . . . 10  |-  ( x  e.  ( ~P A  Cn  ~P A ) ,  y  e.  ( ~P A  Cn  ~P A
)  |->  ( x  o.  y ) )  =  ( x  e.  ( ~P A  Cn  ~P A ) ,  y  e.  ( ~P A  Cn  ~P A )  |->  ( x  o.  y ) )
3837xkococn 17684 . . . . . . . . 9  |-  ( ( ~P A  e.  Top  /\ 
~P A  e. 𝑛Locally  Comp  /\  ~P A  e.  Top )  ->  ( x  e.  ( ~P A  Cn  ~P A ) ,  y  e.  ( ~P A  Cn  ~P A )  |->  ( x  o.  y ) )  e.  ( ( ( ~P A  ^ k o  ~P A
)  tX  ( ~P A  ^ k o  ~P A ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
3927, 36, 27, 38syl3anc 1184 . . . . . . . 8  |-  ( A  e.  V  ->  (
x  e.  ( ~P A  Cn  ~P A
) ,  y  e.  ( ~P A  Cn  ~P A )  |->  ( x  o.  y ) )  e.  ( ( ( ~P A  ^ k o  ~P A )  tX  ( ~P A  ^ k o  ~P A ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
4026, 30, 33, 26, 30, 33, 39cnmpt2res 17701 . . . . . . 7  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  ( x  o.  y ) )  e.  ( ( ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) )  tX  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
4125, 40syl5eqel 2519 . . . . . 6  |-  ( A  e.  V  ->  ( +g  `  G )  e.  ( ( ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) )  tX  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
42 xkopt 17679 . . . . . . . . . . 11  |-  ( ( ~P A  e.  Top  /\  A  e.  V )  ->  ( ~P A  ^ k o  ~P A
)  =  ( Xt_ `  ( A  X.  { ~P A } ) ) )
4327, 42mpancom 651 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( ~P A  ^ k o  ~P A )  =  ( Xt_ `  ( A  X.  { ~P A } ) ) )
4443oveq1d 6088 . . . . . . . . 9  |-  ( A  e.  V  ->  (
( ~P A  ^ k o  ~P A
)t  ( Base `  G
) )  =  ( ( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) ) )
4544, 6eqtrd 2467 . . . . . . . 8  |-  ( A  e.  V  ->  (
( ~P A  ^ k o  ~P A
)t  ( Base `  G
) )  =  (
TopOpen `  G ) )
4645, 45oveq12d 6091 . . . . . . 7  |-  ( A  e.  V  ->  (
( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) )  tX  (
( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  =  ( ( TopOpen `  G
)  tX  ( TopOpen `  G ) ) )
4746oveq1d 6088 . . . . . 6  |-  ( A  e.  V  ->  (
( ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) )  tX  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  Cn  ( ~P A  ^ k o  ~P A
) )  =  ( ( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
4841, 47eleqtrd 2511 . . . . 5  |-  ( A  e.  V  ->  ( +g  `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
49 vex 2951 . . . . . . . . . . . 12  |-  x  e. 
_V
50 vex 2951 . . . . . . . . . . . 12  |-  y  e. 
_V
5149, 50coex 5405 . . . . . . . . . . 11  |-  ( x  o.  y )  e. 
_V
5225, 51fnmpt2i 6412 . . . . . . . . . 10  |-  ( +g  `  G )  Fn  (
( Base `  G )  X.  ( Base `  G
) )
53 eqid 2435 . . . . . . . . . . 11  |-  ( + f `  G )  =  ( + f `  G )
545, 24, 53plusfeq 14696 . . . . . . . . . 10  |-  ( ( +g  `  G )  Fn  ( ( Base `  G )  X.  ( Base `  G ) )  ->  ( + f `  G )  =  ( +g  `  G ) )
5552, 54ax-mp 8 . . . . . . . . 9  |-  ( + f `  G )  =  ( +g  `  G
)
5655eqcomi 2439 . . . . . . . 8  |-  ( +g  `  G )  =  ( + f `  G
)
575, 56grpplusf 14814 . . . . . . 7  |-  ( G  e.  Grp  ->  ( +g  `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
58 frn 5589 . . . . . . 7  |-  ( ( +g  `  G ) : ( ( Base `  G )  X.  ( Base `  G ) ) --> ( Base `  G
)  ->  ran  ( +g  `  G )  C_  ( Base `  G ) )
592, 57, 583syl 19 . . . . . 6  |-  ( A  e.  V  ->  ran  ( +g  `  G ) 
C_  ( Base `  G
) )
60 cnrest2 17342 . . . . . 6  |-  ( ( ( ~P A  ^ k o  ~P A
)  e.  (TopOn `  ( ~P A  Cn  ~P A ) )  /\  ran  ( +g  `  G
)  C_  ( Base `  G )  /\  ( Base `  G )  C_  ( ~P A  Cn  ~P A ) )  -> 
( ( +g  `  G
)  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen `  G )
)  Cn  ( ~P A  ^ k o  ~P A ) )  <-> 
( +g  `  G )  e.  ( ( (
TopOpen `  G )  tX  ( TopOpen `  G )
)  Cn  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) ) ) ) )
6130, 59, 33, 60syl3anc 1184 . . . . 5  |-  ( A  e.  V  ->  (
( +g  `  G )  e.  ( ( (
TopOpen `  G )  tX  ( TopOpen `  G )
)  Cn  ( ~P A  ^ k o  ~P A ) )  <-> 
( +g  `  G )  e.  ( ( (
TopOpen `  G )  tX  ( TopOpen `  G )
)  Cn  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) ) ) ) )
6248, 61mpbid 202 . . . 4  |-  ( A  e.  V  ->  ( +g  `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) ) ) )
6345oveq2d 6089 . . . 4  |-  ( A  e.  V  ->  (
( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  Cn  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  =  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) )
6462, 63eleqtrd 2511 . . 3  |-  ( A  e.  V  ->  ( +g  `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) )
6556, 21istmd 18096 . . 3  |-  ( G  e. TopMnd 
<->  ( G  e.  Mnd  /\  G  e.  TopSp  /\  ( +g  `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) ) )
664, 23, 64, 65syl3anbrc 1138 . 2  |-  ( A  e.  V  ->  G  e. TopMnd )
67 id 20 . . . . . 6  |-  ( A  e.  V  ->  A  e.  V )
68 fconst6g 5624 . . . . . . 7  |-  ( ~P A  e.  Top  ->  ( A  X.  { ~P A } ) : A --> Top )
6927, 68syl 16 . . . . . 6  |-  ( A  e.  V  ->  ( A  X.  { ~P A } ) : A --> Top )
7011biimpa 471 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  ->  x : A -1-1-onto-> A )
71 f1ocnv 5679 . . . . . . . . . . . 12  |-  ( x : A -1-1-onto-> A  ->  `' x : A -1-1-onto-> A )
72 f1of 5666 . . . . . . . . . . . 12  |-  ( `' x : A -1-1-onto-> A  ->  `' x : A --> A )
7370, 71, 723syl 19 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  ->  `' x : A --> A )
7473ffvelrnda 5862 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  /\  y  e.  A
)  ->  ( `' x `  y )  e.  A )
7574an32s 780 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  x  e.  ( Base `  G )
)  ->  ( `' x `  y )  e.  A )
76 eqid 2435 . . . . . . . . 9  |-  ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  =  ( x  e.  (
Base `  G )  |->  ( `' x `  y ) )
7775, 76fmptd 5885 . . . . . . . 8  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) : ( Base `  G
) --> A )
7877adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) : ( Base `  G
) --> A )
79 cnveq 5038 . . . . . . . . . . . . . . . 16  |-  ( x  =  f  ->  `' x  =  `' f
)
8079fveq1d 5722 . . . . . . . . . . . . . . 15  |-  ( x  =  f  ->  ( `' x `  y )  =  ( `' f `
 y ) )
81 fvex 5734 . . . . . . . . . . . . . . 15  |-  ( `' f `  y )  e.  _V
8280, 76, 81fvmpt 5798 . . . . . . . . . . . . . 14  |-  ( f  e.  ( Base `  G
)  ->  ( (
x  e.  ( Base `  G )  |->  ( `' x `  y ) ) `  f )  =  ( `' f `
 y ) )
8382ad2antlr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  t  e.  ~P A )  -> 
( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) `  f )  =  ( `' f `  y
) )
8483eleq1d 2501 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  t  e.  ~P A )  -> 
( ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) `  f )  e.  t  <-> 
( `' f `  y )  e.  t ) )
85 eqid 2435 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  ( Base `  G
)  |->  ( u `  ( `' f `  y
) ) )  =  ( u  e.  (
Base `  G )  |->  ( u `  ( `' f `  y
) ) )
8685mptiniseg 5356 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  _V  ->  ( `' ( u  e.  ( Base `  G
)  |->  ( u `  ( `' f `  y
) ) ) " { y } )  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y } )
8750, 86ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( `' ( u  e.  (
Base `  G )  |->  ( u `  ( `' f `  y
) ) ) " { y } )  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }
88 eqid 2435 . . . . . . . . . . . . . . . . . . 19  |-  ( (
Xt_ `  ( A  X.  { ~P A }
) )t  ( Base `  G
) )  =  ( ( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )
8910ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( Xt_ `  ( A  X.  { ~P A } ) )  e.  (TopOn `  ( A  ^m  A ) ) )
9017ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( Base `  G )  C_  ( A  ^m  A ) )
91 toponuni 16984 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
Xt_ `  ( A  X.  { ~P A }
) )  e.  (TopOn `  ( A  ^m  A
) )  ->  ( A  ^m  A )  = 
U. ( Xt_ `  ( A  X.  { ~P A } ) ) )
92 mpteq1 4281 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  ^m  A )  =  U. ( Xt_ `  ( A  X.  { ~P A } ) )  ->  ( u  e.  ( A  ^m  A
)  |->  ( u `  ( `' f `  y
) ) )  =  ( u  e.  U. ( Xt_ `  ( A  X.  { ~P A } ) )  |->  ( u `  ( `' f `  y ) ) ) )
9389, 91, 923syl 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  ( A  ^m  A
)  |->  ( u `  ( `' f `  y
) ) )  =  ( u  e.  U. ( Xt_ `  ( A  X.  { ~P A } ) )  |->  ( u `  ( `' f `  y ) ) ) )
94 simpll 731 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  A  e.  V )
9569ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( A  X.  { ~P A }
) : A --> Top )
961, 5elsymgbas 15089 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A  e.  V  ->  (
f  e.  ( Base `  G )  <->  f : A
-1-1-onto-> A ) )
9796adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( f  e.  (
Base `  G )  <->  f : A -1-1-onto-> A ) )
9897biimpa 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  f : A
-1-1-onto-> A )
99 f1ocnv 5679 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f : A -1-1-onto-> A  ->  `' f : A -1-1-onto-> A )
100 f1of 5666 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( `' f : A -1-1-onto-> A  ->  `' f : A --> A )
10198, 99, 1003syl 19 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  `' f : A --> A )
102 simplr 732 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  y  e.  A )
103101, 102ffvelrnd 5863 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( `' f `  y )  e.  A )
104 eqid 2435 . . . . . . . . . . . . . . . . . . . . . . 23  |-  U. ( Xt_ `  ( A  X.  { ~P A } ) )  =  U. ( Xt_ `  ( A  X.  { ~P A } ) )
105104, 8ptpjcn 17635 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  V  /\  ( A  X.  { ~P A } ) : A --> Top  /\  ( `' f `
 y )  e.  A )  ->  (
u  e.  U. ( Xt_ `  ( A  X.  { ~P A } ) )  |->  ( u `  ( `' f `  y
) ) )  e.  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn  ( ( A  X.  { ~P A } ) `
 ( `' f `
 y ) ) ) )
10694, 95, 103, 105syl3anc 1184 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  U. ( Xt_ `  ( A  X.  { ~P A } ) )  |->  ( u `  ( `' f `  y ) ) )  e.  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn  ( ( A  X.  { ~P A } ) `
 ( `' f `
 y ) ) ) )
10727ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ~P A  e.  Top )
108 fvconst2g 5937 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ~P A  e.  Top  /\  ( `' f `  y )  e.  A
)  ->  ( ( A  X.  { ~P A } ) `  ( `' f `  y
) )  =  ~P A )
109107, 103, 108syl2anc 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( ( A  X.  { ~P A } ) `  ( `' f `  y
) )  =  ~P A )
110109oveq2d 6089 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn  ( ( A  X.  { ~P A } ) `  ( `' f `  y
) ) )  =  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn 
~P A ) )
111106, 110eleqtrd 2511 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  U. ( Xt_ `  ( A  X.  { ~P A } ) )  |->  ( u `  ( `' f `  y ) ) )  e.  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn 
~P A ) )
11293, 111eqeltrd 2509 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  ( A  ^m  A
)  |->  ( u `  ( `' f `  y
) ) )  e.  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn 
~P A ) )
11388, 89, 90, 112cnmpt1res 17700 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  ( Base `  G
)  |->  ( u `  ( `' f `  y
) ) )  e.  ( ( ( Xt_ `  ( A  X.  { ~P A } ) )t  (
Base `  G )
)  Cn  ~P A
) )
1146oveq1d 6088 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  V  ->  (
( ( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )  Cn 
~P A )  =  ( ( TopOpen `  G
)  Cn  ~P A
) )
115114ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( (
( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )  Cn 
~P A )  =  ( ( TopOpen `  G
)  Cn  ~P A
) )
116113, 115eleqtrd 2511 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  ( Base `  G
)  |->  ( u `  ( `' f `  y
) ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
) )
117 snelpwi 4401 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  A  ->  { y }  e.  ~P A
)
118117ad2antlr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  { y }  e.  ~P A
)
119 cnima 17321 . . . . . . . . . . . . . . . . 17  |-  ( ( ( u  e.  (
Base `  G )  |->  ( u `  ( `' f `  y
) ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
)  /\  { y }  e.  ~P A
)  ->  ( `' ( u  e.  ( Base `  G )  |->  ( u `  ( `' f `  y ) ) ) " {
y } )  e.  ( TopOpen `  G )
)
120116, 118, 119syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( `' ( u  e.  ( Base `  G )  |->  ( u `  ( `' f `  y ) ) ) " {
y } )  e.  ( TopOpen `  G )
)
12187, 120syl5eqelr 2520 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  e.  ( TopOpen `  G )
)
122121adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  e.  ( TopOpen `  G )
)
123 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  f  e.  ( Base `  G
) )
12498adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  f : A -1-1-onto-> A )
125 simpllr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  y  e.  A )
126 f1ocnvfv2 6007 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-onto-> A  /\  y  e.  A )  ->  ( f `  ( `' f `  y
) )  =  y )
127124, 125, 126syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  (
f `  ( `' f `  y )
)  =  y )
128 fveq1 5719 . . . . . . . . . . . . . . . . 17  |-  ( u  =  f  ->  (
u `  ( `' f `  y )
)  =  ( f `
 ( `' f `
 y ) ) )
129128eqeq1d 2443 . . . . . . . . . . . . . . . 16  |-  ( u  =  f  ->  (
( u `  ( `' f `  y
) )  =  y  <-> 
( f `  ( `' f `  y
) )  =  y ) )
130129elrab 3084 . . . . . . . . . . . . . . 15  |-  ( f  e.  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  <->  ( f  e.  ( Base `  G
)  /\  ( f `  ( `' f `  y ) )  =  y ) )
131123, 127, 130sylanbrc 646 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  f  e.  { u  e.  (
Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } )
132 ssrab2 3420 . . . . . . . . . . . . . . . . . 18  |-  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  ( Base `  G )
133132a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  ( Base `  G )
)
13411ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  (
x  e.  ( Base `  G )  <->  x : A
-1-1-onto-> A ) )
135134biimpa 471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  x : A -1-1-onto-> A )
136103ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  ( `' f `  y
)  e.  A )
137 f1ocnvfv 6008 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x : A -1-1-onto-> A  /\  ( `' f `  y
)  e.  A )  ->  ( ( x `
 ( `' f `
 y ) )  =  y  ->  ( `' x `  y )  =  ( `' f `
 y ) ) )
138135, 136, 137syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  (
( x `  ( `' f `  y
) )  =  y  ->  ( `' x `  y )  =  ( `' f `  y
) ) )
139 simplrr 738 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  ( `' f `  y
)  e.  t )
140 eleq1 2495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( `' x `  y )  =  ( `' f `
 y )  -> 
( ( `' x `  y )  e.  t  <-> 
( `' f `  y )  e.  t ) )
141139, 140syl5ibrcom 214 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  (
( `' x `  y )  =  ( `' f `  y
)  ->  ( `' x `  y )  e.  t ) )
142138, 141syld 42 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  (
( x `  ( `' f `  y
) )  =  y  ->  ( `' x `  y )  e.  t ) )
143142ralrimiva 2781 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  A. x  e.  ( Base `  G
) ( ( x `
 ( `' f `
 y ) )  =  y  ->  ( `' x `  y )  e.  t ) )
144 fveq1 5719 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  x  ->  (
u `  ( `' f `  y )
)  =  ( x `
 ( `' f `
 y ) ) )
145144eqeq1d 2443 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  x  ->  (
( u `  ( `' f `  y
) )  =  y  <-> 
( x `  ( `' f `  y
) )  =  y ) )
146145ralrab 3088 . . . . . . . . . . . . . . . . . 18  |-  ( A. x  e.  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  ( `' x `  y )  e.  t  <->  A. x  e.  ( Base `  G
) ( ( x `
 ( `' f `
 y ) )  =  y  ->  ( `' x `  y )  e.  t ) )
147143, 146sylibr 204 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  A. x  e.  { u  e.  (
Base `  G )  |  ( u `  ( `' f `  y
) )  =  y }  ( `' x `  y )  e.  t )
148 ssrab 3413 . . . . . . . . . . . . . . . . 17  |-  ( { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y ) )  =  y } 
C_  { x  e.  ( Base `  G
)  |  ( `' x `  y )  e.  t }  <->  ( {
u  e.  ( Base `  G )  |  ( u `  ( `' f `  y ) )  =  y } 
C_  ( Base `  G
)  /\  A. x  e.  { u  e.  (
Base `  G )  |  ( u `  ( `' f `  y
) )  =  y }  ( `' x `  y )  e.  t ) )
149133, 147, 148sylanbrc 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  { x  e.  ( Base `  G )  |  ( `' x `  y )  e.  t } )
15076mptpreima 5355 . . . . . . . . . . . . . . . 16  |-  ( `' ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) "
t )  =  {
x  e.  ( Base `  G )  |  ( `' x `  y )  e.  t }
151149, 150syl6sseqr 3387 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  ( `' ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
t ) )
152 funmpt 5481 . . . . . . . . . . . . . . . 16  |-  Fun  (
x  e.  ( Base `  G )  |->  ( `' x `  y ) )
153 fvex 5734 . . . . . . . . . . . . . . . . . 18  |-  ( `' x `  y )  e.  _V
154153, 76dmmpti 5566 . . . . . . . . . . . . . . . . 17  |-  dom  (
x  e.  ( Base `  G )  |->  ( `' x `  y ) )  =  ( Base `  G )
155133, 154syl6sseqr 3387 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  dom  ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) )
156 funimass3 5838 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  /\  { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y ) )  =  y } 
C_  dom  ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) )  ->  ( ( ( x  e.  ( Base `  G )  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y } ) 
C_  t  <->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  ( `' ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
t ) ) )
157152, 155, 156sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  (
( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } )  C_  t  <->  { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y ) )  =  y } 
C_  ( `' ( x  e.  ( Base `  G )  |->  ( `' x `  y ) ) " t ) ) )
158151, 157mpbird 224 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  (
( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } )  C_  t
)
159 eleq2 2496 . . . . . . . . . . . . . . . 16  |-  ( v  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  ->  ( f  e.  v  <->  f  e.  { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y ) )  =  y } ) )
160 imaeq2 5191 . . . . . . . . . . . . . . . . 17  |-  ( v  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  ->  ( ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) "
v )  =  ( ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } ) )
161160sseq1d 3367 . . . . . . . . . . . . . . . 16  |-  ( v  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  ->  ( ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t  <->  ( ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } )  C_  t
) )
162159, 161anbi12d 692 . . . . . . . . . . . . . . 15  |-  ( v  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  ->  ( ( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
)  <->  ( f  e. 
{ u  e.  (
Base `  G )  |  ( u `  ( `' f `  y
) )  =  y }  /\  ( ( x  e.  ( Base `  G )  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y } ) 
C_  t ) ) )
163162rspcev 3044 . . . . . . . . . . . . . 14  |-  ( ( { u  e.  (
Base `  G )  |  ( u `  ( `' f `  y
) )  =  y }  e.  ( TopOpen `  G )  /\  (
f  e.  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } )  C_  t
) )  ->  E. v  e.  ( TopOpen `  G )
( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) )
164122, 131, 158, 163syl12anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  E. v  e.  ( TopOpen `  G )
( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) )
165164expr 599 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  t  e.  ~P A )  -> 
( ( `' f `
 y )  e.  t  ->  E. v  e.  ( TopOpen `  G )
( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) ) )
16684, 165sylbid 207 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  t  e.  ~P A )  -> 
( ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) `  f )  e.  t  ->  E. v  e.  (
TopOpen `  G ) ( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) ) )
167166ralrimiva 2781 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  A. t  e.  ~P  A ( ( ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) `  f )  e.  t  ->  E. v  e.  (
TopOpen `  G ) ( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) ) )
16820ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( TopOpen `  G )  e.  (TopOn `  ( Base `  G
) ) )
1697ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ~P A  e.  (TopOn `  A )
)
170 simpr 448 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  f  e.  ( Base `  G )
)
171 iscnp 17293 . . . . . . . . . . 11  |-  ( ( ( TopOpen `  G )  e.  (TopOn `  ( Base `  G ) )  /\  ~P A  e.  (TopOn `  A )  /\  f  e.  ( Base `  G
) )  ->  (
( x  e.  (
Base `  G )  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
)  <->  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) : ( Base `  G
) --> A  /\  A. t  e.  ~P  A
( ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) `  f )  e.  t  ->  E. v  e.  (
TopOpen `  G ) ( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) ) ) ) )
172168, 169, 170, 171syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( (
x  e.  ( Base `  G )  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f )  <->  ( (
x  e.  ( Base `  G )  |->  ( `' x `  y ) ) : ( Base `  G ) --> A  /\  A. t  e.  ~P  A
( ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) `  f )  e.  t  ->  E. v  e.  (
TopOpen `  G ) ( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) ) ) ) )
17378, 167, 172mpbir2and 889 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
) )
174173ralrimiva 2781 . . . . . . . 8  |-  ( ( A  e.  V  /\  y  e.  A )  ->  A. f  e.  (
Base `  G )
( x  e.  (
Base `  G )  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
) )
175 cncnp 17336 . . . . . . . . . 10  |-  ( ( ( TopOpen `  G )  e.  (TopOn `  ( Base `  G ) )  /\  ~P A  e.  (TopOn `  A ) )  -> 
( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
)  <->  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) : ( Base `  G
) --> A  /\  A. f  e.  ( Base `  G ) ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
) ) ) )
17620, 7, 175syl2anc 643 . . . . . . . . 9  |-  ( A  e.  V  ->  (
( x  e.  (
Base `  G )  |->  ( `' x `  y ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
)  <->  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) : ( Base `  G
) --> A  /\  A. f  e.  ( Base `  G ) ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
) ) ) )
177176adantr 452 . . . . . . . 8  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
)  <->  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) : ( Base `  G
) --> A  /\  A. f  e.  ( Base `  G ) ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
) ) ) )
17877, 174, 177mpbir2and 889 . . . . . . 7  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( x  e.  (
Base `  G )  |->  ( `' x `  y ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
) )
179 fvconst2g 5937 . . . . . . . . 9  |-  ( ( ~P A  e.  Top  /\  y  e.  A )  ->  ( ( A  X.  { ~P A } ) `  y
)  =  ~P A
)
18027, 179sylan 458 . . . . . . . 8  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( ( A  X.  { ~P A } ) `
 y )  =  ~P A )
181180oveq2d 6089 . . . . . . 7  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( ( TopOpen `  G
)  Cn  ( ( A  X.  { ~P A } ) `  y
) )  =  ( ( TopOpen `  G )  Cn  ~P A ) )
182178, 181eleqtrrd 2512 . . . . . 6  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( x  e.  (
Base `  G )  |->  ( `' x `  y ) )  e.  ( ( TopOpen `  G
)  Cn  ( ( A  X.  { ~P A } ) `  y
) ) )
1838, 20, 67, 69, 182ptcn 17651 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G )  |->  ( y  e.  A  |->  ( `' x `  y ) ) )  e.  ( ( TopOpen `  G )  Cn  ( Xt_ `  ( A  X.  { ~P A } ) ) ) )
184 eqid 2435 . . . . . . . . 9  |-  ( inv g `  G )  =  ( inv g `  G )
1855, 184grpinvf 14841 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( inv g `  G ) : ( Base `  G
) --> ( Base `  G
) )
1862, 185syl 16 . . . . . . 7  |-  ( A  e.  V  ->  ( inv g `  G ) : ( Base `  G
) --> ( Base `  G
) )
187186feqmptd 5771 . . . . . 6  |-  ( A  e.  V  ->  ( inv g `  G )  =  ( x  e.  ( Base `  G
)  |->  ( ( inv g `  G ) `
 x ) ) )
1881, 5, 184symginv 15097 . . . . . . . . 9  |-  ( x  e.  ( Base `  G
)  ->  ( ( inv g `  G ) `
 x )  =  `' x )
189188adantl 453 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  -> 
( ( inv g `  G ) `  x
)  =  `' x
)
19073feqmptd 5771 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  ->  `' x  =  (
y  e.  A  |->  ( `' x `  y ) ) )
191189, 190eqtrd 2467 . . . . . . 7  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  -> 
( ( inv g `  G ) `  x
)  =  ( y  e.  A  |->  ( `' x `  y ) ) )
192191mpteq2dva 4287 . . . . . 6  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G )  |->  ( ( inv g `  G
) `  x )
)  =  ( x  e.  ( Base `  G
)  |->  ( y  e.  A  |->  ( `' x `  y ) ) ) )
193187, 192eqtrd 2467 . . . . 5  |-  ( A  e.  V  ->  ( inv g `  G )  =  ( x  e.  ( Base `  G
)  |->  ( y  e.  A  |->  ( `' x `  y ) ) ) )
19443oveq2d 6089 . . . . 5  |-  ( A  e.  V  ->  (
( TopOpen `  G )  Cn  ( ~P A  ^ k o  ~P A
) )  =  ( ( TopOpen `  G )  Cn  ( Xt_ `  ( A  X.  { ~P A } ) ) ) )
195183, 193, 1943eltr4d 2516 . . . 4  |-  ( A  e.  V  ->  ( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  ( ~P A  ^ k o  ~P A ) ) )
196 frn 5589 . . . . . 6  |-  ( ( inv g `  G
) : ( Base `  G ) --> ( Base `  G )  ->  ran  ( inv g `  G
)  C_  ( Base `  G ) )
1972, 185, 1963syl 19 . . . . 5  |-  ( A  e.  V  ->  ran  ( inv g `  G
)  C_  ( Base `  G ) )
198 cnrest2 17342 . . . . 5  |-  ( ( ( ~P A  ^ k o  ~P A
)  e.  (TopOn `  ( ~P A  Cn  ~P A ) )  /\  ran  ( inv g `  G )  C_  ( Base `  G )  /\  ( Base `  G )  C_  ( ~P A  Cn  ~P A ) )  -> 
( ( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  ( ~P A  ^ k o  ~P A
) )  <->  ( inv g `  G )  e.  ( ( TopOpen `  G
)  Cn  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) ) ) ) )
19930, 197, 33, 198syl3anc 1184 . . . 4  |-  ( A  e.  V  ->  (
( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  ( ~P A  ^ k o  ~P A
) )  <->  ( inv g `  G )  e.  ( ( TopOpen `  G
)  Cn  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) ) ) ) )
200195, 199mpbid 202 . . 3  |-  ( A  e.  V  ->  ( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  (
( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) ) )
20145oveq2d 6089 . . 3  |-  ( A  e.  V  ->  (
( TopOpen `  G )  Cn  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  =  ( ( TopOpen `  G
)  Cn  ( TopOpen `  G ) ) )
202200, 201eleqtrd 2511 . 2  |-  ( A  e.  V  ->  ( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  ( TopOpen
`  G ) ) )
20321, 184istgp 18099 . 2  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e. TopMnd  /\  ( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  ( TopOpen
`  G ) ) ) )
2042, 66, 202, 203syl3anbrc 1138 1  |-  ( A  e.  V  ->  G  e.  TopGrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948    C_ wss 3312   ~Pcpw 3791   {csn 3806   U.cuni 4007    e. cmpt 4258    X. cxp 4868   `'ccnv 4869   dom cdm 4870   ran crn 4871   "cima 4873    o. ccom 4874   Fun wfun 5440    Fn wfn 5441   -->wf 5442   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075    ^m cmap 7010   Basecbs 13461   +g cplusg 13521   ↾t crest 13640   TopOpenctopn 13641   Xt_cpt 13658   Mndcmnd 14676   Grpcgrp 14677   inv gcminusg 14678   + fcplusf 14679   SymGrpcsymg 15084   Topctop 16950  TopOnctopon 16951   TopSpctps 16953    Cn ccn 17280    CnP ccnp 17281   Compccmp 17441  Locally clly 17519  𝑛Locally cnlly 17520    tX ctx 17584    ^ k o cxko 17585  TopMndctmd 18092   TopGrpctgp 18093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-plusg 13534  df-tset 13540  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-0g 13719  df-mnd 14682  df-plusf 14683  df-grp 14804  df-minusg 14805  df-symg 15085  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-ntr 17076  df-nei 17154  df-cn 17283  df-cnp 17284  df-cmp 17442  df-lly 17521  df-nlly 17522  df-tx 17586  df-xko 17587  df-tmd 18094  df-tgp 18095
  Copyright terms: Public domain W3C validator