Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0top Structured version   Unicode version

Theorem t0top 17393
 Description: A T0 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t0top

Proof of Theorem t0top
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2436 . . 3
21ist0 17384 . 2
32simplbi 447 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wcel 1725  wral 2705  cuni 4015  ctop 16958  ct0 17370 This theorem is referenced by:  restt0  17430  sst0  17437  kqt0  17778  t0hmph  17822  kqhmph  17851  ordtopt0  26192 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-uni 4016  df-t0 17377
 Copyright terms: Public domain W3C validator