MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1conperf Unicode version

Theorem t1conperf 17162
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
t1conperf.1  |-  X  = 
U. J
Assertion
Ref Expression
t1conperf  |-  ( ( J  e.  Fre  /\  J  e.  Con  /\  -.  X  ~~  1o )  ->  J  e. Perf )

Proof of Theorem t1conperf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 t1conperf.1 . . . . . . . . 9  |-  X  = 
U. J
2 simplr 731 . . . . . . . . 9  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  J  e.  Con )
3 simprr 733 . . . . . . . . 9  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  e.  J )
4 vex 2791 . . . . . . . . . . 11  |-  x  e. 
_V
54snnz 3744 . . . . . . . . . 10  |-  { x }  =/=  (/)
65a1i 10 . . . . . . . . 9  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  =/=  (/) )
71t1sncld 17054 . . . . . . . . . 10  |-  ( ( J  e.  Fre  /\  x  e.  X )  ->  { x }  e.  ( Clsd `  J )
)
87ad2ant2r 727 . . . . . . . . 9  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  e.  ( Clsd `  J )
)
91, 2, 3, 6, 8conclo 17141 . . . . . . . 8  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  =  X )
104ensn1 6925 . . . . . . . 8  |-  { x }  ~~  1o
119, 10syl6eqbrr 4061 . . . . . . 7  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  X  ~~  1o )
1211expr 598 . . . . . 6  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  x  e.  X
)  ->  ( {
x }  e.  J  ->  X  ~~  1o ) )
1312rexlimdva 2667 . . . . 5  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  ( E. x  e.  X  { x }  e.  J  ->  X  ~~  1o ) )
1413con3d 125 . . . 4  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  ( -.  X  ~~  1o  ->  -.  E. x  e.  X  { x }  e.  J )
)
15 ralnex 2553 . . . 4  |-  ( A. x  e.  X  -.  { x }  e.  J  <->  -. 
E. x  e.  X  { x }  e.  J )
1614, 15syl6ibr 218 . . 3  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  ( -.  X  ~~  1o  ->  A. x  e.  X  -.  { x }  e.  J ) )
17 t1top 17058 . . . . 5  |-  ( J  e.  Fre  ->  J  e.  Top )
1817adantr 451 . . . 4  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  J  e.  Top )
191isperf3 16884 . . . . 5  |-  ( J  e. Perf 
<->  ( J  e.  Top  /\ 
A. x  e.  X  -.  { x }  e.  J ) )
2019baib 871 . . . 4  |-  ( J  e.  Top  ->  ( J  e. Perf  <->  A. x  e.  X  -.  { x }  e.  J ) )
2118, 20syl 15 . . 3  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  ( J  e. Perf  <->  A. x  e.  X  -.  { x }  e.  J )
)
2216, 21sylibrd 225 . 2  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  ( -.  X  ~~  1o  ->  J  e. Perf )
)
23223impia 1148 1  |-  ( ( J  e.  Fre  /\  J  e.  Con  /\  -.  X  ~~  1o )  ->  J  e. Perf )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   (/)c0 3455   {csn 3640   U.cuni 3827   class class class wbr 4023   ` cfv 5255   1oc1o 6472    ~~ cen 6860   Topctop 16631   Clsdccld 16753  Perfcperf 16867   Frect1 17035   Conccon 17137
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-en 6864  df-top 16636  df-cld 16756  df-ntr 16757  df-cls 16758  df-lp 16868  df-perf 16869  df-t1 17042  df-con 17138
  Copyright terms: Public domain W3C validator