Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfb Unicode version

Theorem tailfb 26429
Description: The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypothesis
Ref Expression
tailfb.1  |-  X  =  dom  D
Assertion
Ref Expression
tailfb  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  e.  ( fBas `  X
) )

Proof of Theorem tailfb
Dummy variables  v  u  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tailfb.1 . . . . 5  |-  X  =  dom  D
21tailf 26427 . . . 4  |-  ( D  e.  DirRel  ->  ( tail `  D
) : X --> ~P X
)
3 frn 5411 . . . 4  |-  ( (
tail `  D ) : X --> ~P X  ->  ran  ( tail `  D
)  C_  ~P X
)
42, 3syl 15 . . 3  |-  ( D  e.  DirRel  ->  ran  ( tail `  D )  C_  ~P X )
54adantr 451 . 2  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  C_ 
~P X )
6 n0 3477 . . . . 5  |-  ( X  =/=  (/)  <->  E. x  x  e.  X )
7 ffn 5405 . . . . . . . 8  |-  ( (
tail `  D ) : X --> ~P X  -> 
( tail `  D )  Fn  X )
8 fnfvelrn 5678 . . . . . . . . 9  |-  ( ( ( tail `  D
)  Fn  X  /\  x  e.  X )  ->  ( ( tail `  D
) `  x )  e.  ran  ( tail `  D
) )
98ex 423 . . . . . . . 8  |-  ( (
tail `  D )  Fn  X  ->  ( x  e.  X  ->  (
( tail `  D ) `  x )  e.  ran  ( tail `  D )
) )
102, 7, 93syl 18 . . . . . . 7  |-  ( D  e.  DirRel  ->  ( x  e.  X  ->  ( ( tail `  D ) `  x )  e.  ran  ( tail `  D )
) )
11 ne0i 3474 . . . . . . 7  |-  ( ( ( tail `  D
) `  x )  e.  ran  ( tail `  D
)  ->  ran  ( tail `  D )  =/=  (/) )
1210, 11syl6 29 . . . . . 6  |-  ( D  e.  DirRel  ->  ( x  e.  X  ->  ran  ( tail `  D )  =/=  (/) ) )
1312exlimdv 1626 . . . . 5  |-  ( D  e.  DirRel  ->  ( E. x  x  e.  X  ->  ran  ( tail `  D
)  =/=  (/) ) )
146, 13syl5bi 208 . . . 4  |-  ( D  e.  DirRel  ->  ( X  =/=  (/)  ->  ran  ( tail `  D )  =/=  (/) ) )
1514imp 418 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  =/=  (/) )
161tailini 26428 . . . . . . . 8  |-  ( ( D  e.  DirRel  /\  x  e.  X )  ->  x  e.  ( ( tail `  D
) `  x )
)
17 n0i 3473 . . . . . . . 8  |-  ( x  e.  ( ( tail `  D ) `  x
)  ->  -.  (
( tail `  D ) `  x )  =  (/) )
1816, 17syl 15 . . . . . . 7  |-  ( ( D  e.  DirRel  /\  x  e.  X )  ->  -.  ( ( tail `  D
) `  x )  =  (/) )
1918nrexdv 2659 . . . . . 6  |-  ( D  e.  DirRel  ->  -.  E. x  e.  X  ( ( tail `  D ) `  x )  =  (/) )
2019adantr 451 . . . . 5  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  -.  E. x  e.  X  ( ( tail `  D
) `  x )  =  (/) )
21 fvelrnb 5586 . . . . . . 7  |-  ( (
tail `  D )  Fn  X  ->  ( (/)  e.  ran  ( tail `  D
)  <->  E. x  e.  X  ( ( tail `  D
) `  x )  =  (/) ) )
222, 7, 213syl 18 . . . . . 6  |-  ( D  e.  DirRel  ->  ( (/)  e.  ran  ( tail `  D )  <->  E. x  e.  X  ( ( tail `  D
) `  x )  =  (/) ) )
2322adantr 451 . . . . 5  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ( (/) 
e.  ran  ( tail `  D )  <->  E. x  e.  X  ( ( tail `  D ) `  x )  =  (/) ) )
2420, 23mtbird 292 . . . 4  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  -.  (/) 
e.  ran  ( tail `  D ) )
25 df-nel 2462 . . . 4  |-  ( (/)  e/ 
ran  ( tail `  D
)  <->  -.  (/)  e.  ran  ( tail `  D )
)
2624, 25sylibr 203 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  (/)  e/  ran  ( tail `  D )
)
27 fvelrnb 5586 . . . . . . . 8  |-  ( (
tail `  D )  Fn  X  ->  ( x  e.  ran  ( tail `  D )  <->  E. u  e.  X  ( ( tail `  D ) `  u )  =  x ) )
28 fvelrnb 5586 . . . . . . . 8  |-  ( (
tail `  D )  Fn  X  ->  ( y  e.  ran  ( tail `  D )  <->  E. v  e.  X  ( ( tail `  D ) `  v )  =  y ) )
2927, 28anbi12d 691 . . . . . . 7  |-  ( (
tail `  D )  Fn  X  ->  ( ( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D ) )  <->  ( E. u  e.  X  (
( tail `  D ) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v
)  =  y ) ) )
302, 7, 293syl 18 . . . . . 6  |-  ( D  e.  DirRel  ->  ( ( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D
) )  <->  ( E. u  e.  X  (
( tail `  D ) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v
)  =  y ) ) )
31 reeanv 2720 . . . . . . 7  |-  ( E. u  e.  X  E. v  e.  X  (
( ( tail `  D
) `  u )  =  x  /\  (
( tail `  D ) `  v )  =  y )  <->  ( E. u  e.  X  ( ( tail `  D ) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v
)  =  y ) )
321dirge 14375 . . . . . . . . . . 11  |-  ( ( D  e.  DirRel  /\  u  e.  X  /\  v  e.  X )  ->  E. w  e.  X  ( u D w  /\  v D w ) )
33323expb 1152 . . . . . . . . . 10  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  E. w  e.  X  ( u D w  /\  v D w ) )
342, 7syl 15 . . . . . . . . . . . . . . 15  |-  ( D  e.  DirRel  ->  ( tail `  D
)  Fn  X )
35 fnfvelrn 5678 . . . . . . . . . . . . . . 15  |-  ( ( ( tail `  D
)  Fn  X  /\  w  e.  X )  ->  ( ( tail `  D
) `  w )  e.  ran  ( tail `  D
) )
3634, 35sylan 457 . . . . . . . . . . . . . 14  |-  ( ( D  e.  DirRel  /\  w  e.  X )  ->  (
( tail `  D ) `  w )  e.  ran  ( tail `  D )
)
3736ad2ant2r 727 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( ( tail `  D
) `  w )  e.  ran  ( tail `  D
) )
38 vex 2804 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  x  e. 
_V
39 dirtr 14374 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( D  e.  DirRel  /\  x  e.  _V )  /\  ( u D w  /\  w D x ) )  ->  u D x )
4039exp32 588 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( D  e.  DirRel  /\  x  e.  _V )  ->  (
u D w  -> 
( w D x  ->  u D x ) ) )
4138, 40mpan2 652 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( D  e.  DirRel  ->  ( u D w  ->  ( w D x  ->  u D x ) ) )
4241com23 72 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( D  e.  DirRel  ->  ( w D x  ->  ( u D w  ->  u D x ) ) )
4342imp 418 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( D  e.  DirRel  /\  w D x )  -> 
( u D w  ->  u D x ) )
4443ad2ant2rl 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  w D x ) )  ->  ( u D w  ->  u D x ) )
45 dirtr 14374 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( D  e.  DirRel  /\  x  e.  _V )  /\  ( v D w  /\  w D x ) )  ->  v D x )
4645exp32 588 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( D  e.  DirRel  /\  x  e.  _V )  ->  (
v D w  -> 
( w D x  ->  v D x ) ) )
4738, 46mpan2 652 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( D  e.  DirRel  ->  ( v D w  ->  ( w D x  ->  v D x ) ) )
4847com23 72 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( D  e.  DirRel  ->  ( w D x  ->  ( v D w  ->  v D x ) ) )
4948imp 418 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( D  e.  DirRel  /\  w D x )  -> 
( v D w  ->  v D x ) )
5049ad2ant2rl 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  w D x ) )  ->  ( v D w  ->  v D x ) )
5144, 50anim12d 546 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  w D x ) )  ->  ( ( u D w  /\  v D w )  -> 
( u D x  /\  v D x ) ) )
5251expr 598 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  w  e.  X )  ->  (
w D x  -> 
( ( u D w  /\  v D w )  ->  (
u D x  /\  v D x ) ) ) )
5352com23 72 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  w  e.  X )  ->  (
( u D w  /\  v D w )  ->  ( w D x  ->  ( u D x  /\  v D x ) ) ) )
5453impr 602 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( w D x  ->  ( u D x  /\  v D x ) ) )
551eltail 26426 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  DirRel  /\  w  e.  X  /\  x  e.  _V )  ->  (
x  e.  ( (
tail `  D ) `  w )  <->  w D x ) )
5638, 55mp3an3 1266 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  DirRel  /\  w  e.  X )  ->  (
x  e.  ( (
tail `  D ) `  w )  <->  w D x ) )
5756ad2ant2r 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( x  e.  ( ( tail `  D
) `  w )  <->  w D x ) )
581eltail 26426 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  DirRel  /\  u  e.  X  /\  x  e.  _V )  ->  (
x  e.  ( (
tail `  D ) `  u )  <->  u D x ) )
5938, 58mp3an3 1266 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  DirRel  /\  u  e.  X )  ->  (
x  e.  ( (
tail `  D ) `  u )  <->  u D x ) )
6059adantrr 697 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( x  e.  ( ( tail `  D
) `  u )  <->  u D x ) )
611eltail 26426 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  DirRel  /\  v  e.  X  /\  x  e.  _V )  ->  (
x  e.  ( (
tail `  D ) `  v )  <->  v D x ) )
6238, 61mp3an3 1266 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  DirRel  /\  v  e.  X )  ->  (
x  e.  ( (
tail `  D ) `  v )  <->  v D x ) )
6362adantrl 696 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( x  e.  ( ( tail `  D
) `  v )  <->  v D x ) )
6460, 63anbi12d 691 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( (
x  e.  ( (
tail `  D ) `  u )  /\  x  e.  ( ( tail `  D
) `  v )
)  <->  ( u D x  /\  v D x ) ) )
6564adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( ( x  e.  ( ( tail `  D
) `  u )  /\  x  e.  (
( tail `  D ) `  v ) )  <->  ( u D x  /\  v D x ) ) )
6654, 57, 653imtr4d 259 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( x  e.  ( ( tail `  D
) `  w )  ->  ( x  e.  ( ( tail `  D
) `  u )  /\  x  e.  (
( tail `  D ) `  v ) ) ) )
67 elin 3371 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( (
tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) )  <->  ( x  e.  ( ( tail `  D
) `  u )  /\  x  e.  (
( tail `  D ) `  v ) ) )
6866, 67syl6ibr 218 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( x  e.  ( ( tail `  D
) `  w )  ->  x  e.  ( ( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) ) )
6968ssrdv 3198 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( ( tail `  D
) `  w )  C_  ( ( ( tail `  D ) `  u
)  i^i  ( ( tail `  D ) `  v ) ) )
70 sseq1 3212 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( tail `  D ) `  w
)  ->  ( z  C_  ( ( ( tail `  D ) `  u
)  i^i  ( ( tail `  D ) `  v ) )  <->  ( ( tail `  D ) `  w )  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) ) )
7170rspcev 2897 . . . . . . . . . . . . 13  |-  ( ( ( ( tail `  D
) `  w )  e.  ran  ( tail `  D
)  /\  ( ( tail `  D ) `  w )  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) )
7237, 69, 71syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  ->  E. z  e.  ran  ( tail `  D )
z  C_  ( (
( tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) ) )
7372exp32 588 . . . . . . . . . . 11  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( w  e.  X  ->  ( ( u D w  /\  v D w )  ->  E. z  e.  ran  ( tail `  D )
z  C_  ( (
( tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) ) ) ) )
7473rexlimdv 2679 . . . . . . . . . 10  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( E. w  e.  X  (
u D w  /\  v D w )  ->  E. z  e.  ran  ( tail `  D )
z  C_  ( (
( tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) ) ) )
7533, 74mpd 14 . . . . . . . . 9  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) )
76 ineq1 3376 . . . . . . . . . . . 12  |-  ( ( ( tail `  D
) `  u )  =  x  ->  ( ( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
)  =  ( x  i^i  ( ( tail `  D ) `  v
) ) )
7776sseq2d 3219 . . . . . . . . . . 11  |-  ( ( ( tail `  D
) `  u )  =  x  ->  ( z 
C_  ( ( (
tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) )  <->  z  C_  ( x  i^i  (
( tail `  D ) `  v ) ) ) )
7877rexbidv 2577 . . . . . . . . . 10  |-  ( ( ( tail `  D
) `  u )  =  x  ->  ( E. z  e.  ran  ( tail `  D ) z 
C_  ( ( (
tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) )  <->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  ( ( tail `  D ) `  v ) ) ) )
79 ineq2 3377 . . . . . . . . . . . 12  |-  ( ( ( tail `  D
) `  v )  =  y  ->  ( x  i^i  ( ( tail `  D ) `  v
) )  =  ( x  i^i  y ) )
8079sseq2d 3219 . . . . . . . . . . 11  |-  ( ( ( tail `  D
) `  v )  =  y  ->  ( z 
C_  ( x  i^i  ( ( tail `  D
) `  v )
)  <->  z  C_  (
x  i^i  y )
) )
8180rexbidv 2577 . . . . . . . . . 10  |-  ( ( ( tail `  D
) `  v )  =  y  ->  ( E. z  e.  ran  ( tail `  D ) z 
C_  ( x  i^i  ( ( tail `  D
) `  v )
)  <->  E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) )
8278, 81sylan9bb 680 . . . . . . . . 9  |-  ( ( ( ( tail `  D
) `  u )  =  x  /\  (
( tail `  D ) `  v )  =  y )  ->  ( E. z  e.  ran  ( tail `  D ) z  C_  ( ( ( tail `  D ) `  u
)  i^i  ( ( tail `  D ) `  v ) )  <->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8375, 82syl5ibcom 211 . . . . . . . 8  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( (
( ( tail `  D
) `  u )  =  x  /\  (
( tail `  D ) `  v )  =  y )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8483rexlimdvva 2687 . . . . . . 7  |-  ( D  e.  DirRel  ->  ( E. u  e.  X  E. v  e.  X  ( (
( tail `  D ) `  u )  =  x  /\  ( ( tail `  D ) `  v
)  =  y )  ->  E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) )
8531, 84syl5bir 209 . . . . . 6  |-  ( D  e.  DirRel  ->  ( ( E. u  e.  X  ( ( tail `  D
) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v )  =  y )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8630, 85sylbid 206 . . . . 5  |-  ( D  e.  DirRel  ->  ( ( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D
) )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8786adantr 451 . . . 4  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  (
( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D )
)  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8887ralrimivv 2647 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  A. x  e.  ran  ( tail `  D
) A. y  e. 
ran  ( tail `  D
) E. z  e. 
ran  ( tail `  D
) z  C_  (
x  i^i  y )
)
8915, 26, 883jca 1132 . 2  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ( ran  ( tail `  D
)  =/=  (/)  /\  (/)  e/  ran  ( tail `  D )  /\  A. x  e.  ran  ( tail `  D ) A. y  e.  ran  ( tail `  D ) E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) )
90 dmexg 4955 . . . . 5  |-  ( D  e.  DirRel  ->  dom  D  e.  _V )
911, 90syl5eqel 2380 . . . 4  |-  ( D  e.  DirRel  ->  X  e.  _V )
9291adantr 451 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  X  e.  _V )
93 isfbas2 17546 . . 3  |-  ( X  e.  _V  ->  ( ran  ( tail `  D
)  e.  ( fBas `  X )  <->  ( ran  ( tail `  D )  C_ 
~P X  /\  ( ran  ( tail `  D
)  =/=  (/)  /\  (/)  e/  ran  ( tail `  D )  /\  A. x  e.  ran  ( tail `  D ) A. y  e.  ran  ( tail `  D ) E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) ) ) )
9492, 93syl 15 . 2  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ( ran  ( tail `  D
)  e.  ( fBas `  X )  <->  ( ran  ( tail `  D )  C_ 
~P X  /\  ( ran  ( tail `  D
)  =/=  (/)  /\  (/)  e/  ran  ( tail `  D )  /\  A. x  e.  ran  ( tail `  D ) A. y  e.  ran  ( tail `  D ) E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) ) ) )
955, 89, 94mpbir2and 888 1  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  e.  ( fBas `  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459    e/ wnel 2460   A.wral 2556   E.wrex 2557   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   class class class wbr 4039   dom cdm 4705   ran crn 4706    Fn wfn 5266   -->wf 5267   ` cfv 5271   DirRelcdir 14366   tailctail 14367   fBascfbas 17534
This theorem is referenced by:  filnetlem4  26433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-dir 14368  df-tail 14369  df-fbas 17536
  Copyright terms: Public domain W3C validator