Mathbox for Jeff Hankins < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfval Unicode version

Theorem tailfval 26321
 Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1
Assertion
Ref Expression
tailfval
Distinct variable groups:   ,   ,

Proof of Theorem tailfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 uniexg 4517 . . . 4
2 uniexg 4517 . . . 4
3 mptexg 5745 . . . 4
41, 2, 33syl 18 . . 3
5 unieq 3836 . . . . . 6
65unieqd 3838 . . . . 5
7 imaeq1 5007 . . . . 5
86, 7mpteq12dv 4098 . . . 4
9 df-tail 14353 . . . 4
108, 9fvmptg 5600 . . 3
114, 10mpdan 649 . 2
12 tailfval.1 . . . 4
13 dirdm 14356 . . . 4
1412, 13syl5req 2328 . . 3
15 eqidd 2284 . . 3
1614, 15mpteq12dv 4098 . 2
1711, 16eqtrd 2315 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1623   wcel 1684  cvv 2788  csn 3640  cuni 3827   cmpt 4077   cdm 4689  cima 4692  cfv 5255  cdir 14350  ctail 14351 This theorem is referenced by:  tailval  26322  tailf  26324 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-dir 14352  df-tail 14353
 Copyright terms: Public domain W3C validator