MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanabsge Unicode version

Theorem tanabsge 19874
Description: The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanabsge  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( abs `  A
)  <_  ( abs `  ( tan `  A
) ) )

Proof of Theorem tanabsge
StepHypRef Expression
1 elioore 10686 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  e.  RR )
2 0re 8838 . . 3  |-  0  e.  RR
3 lttri4 8906 . . 3  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A  <  0  \/  A  =  0  \/  0  <  A ) )
41, 2, 3sylancl 643 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( A  <  0  \/  A  =  0  \/  0  <  A ) )
51adantr 451 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  A  e.  RR )
65renegcld 9210 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  -u A  e.  RR )
71lt0neg1d 9342 . . . . . . . . . . 11  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( A  <  0  <->  0  <  -u A ) )
87biimpa 470 . . . . . . . . . 10  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  0  <  -u A )
9 eliooord 10710 . . . . . . . . . . . . 13  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( -u ( pi  / 
2 )  <  A  /\  A  <  ( pi 
/  2 ) ) )
109simpld 445 . . . . . . . . . . . 12  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  -u ( pi  /  2
)  <  A )
1110adantr 451 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  -u ( pi 
/  2 )  < 
A )
12 pire 19832 . . . . . . . . . . . . 13  |-  pi  e.  RR
13 rehalfcl 9938 . . . . . . . . . . . . 13  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
1412, 13ax-mp 8 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  e.  RR
15 ltnegcon1 9275 . . . . . . . . . . . 12  |-  ( ( ( pi  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( -u ( pi 
/  2 )  < 
A  <->  -u A  <  (
pi  /  2 ) ) )
1614, 5, 15sylancr 644 . . . . . . . . . . 11  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( -u (
pi  /  2 )  <  A  <->  -u A  < 
( pi  /  2
) ) )
1711, 16mpbid 201 . . . . . . . . . 10  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  -u A  < 
( pi  /  2
) )
18 0xr 8878 . . . . . . . . . . 11  |-  0  e.  RR*
19 ressxr 8876 . . . . . . . . . . . 12  |-  RR  C_  RR*
2019, 14sselii 3177 . . . . . . . . . . 11  |-  ( pi 
/  2 )  e. 
RR*
21 elioo2 10697 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  ( -u A  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( -u A  e.  RR  /\  0  <  -u A  /\  -u A  <  ( pi  /  2
) ) ) )
2218, 20, 21mp2an 653 . . . . . . . . . 10  |-  ( -u A  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( -u A  e.  RR  /\  0  <  -u A  /\  -u A  <  ( pi  /  2
) ) )
236, 8, 17, 22syl3anbrc 1136 . . . . . . . . 9  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  -u A  e.  ( 0 (,) (
pi  /  2 ) ) )
24 sincosq1sgn 19866 . . . . . . . . 9  |-  ( -u A  e.  ( 0 (,) ( pi  / 
2 ) )  -> 
( 0  <  ( sin `  -u A )  /\  0  <  ( cos `  -u A
) ) )
2523, 24syl 15 . . . . . . . 8  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( 0  <  ( sin `  -u A
)  /\  0  <  ( cos `  -u A
) ) )
2625simprd 449 . . . . . . 7  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  0  <  ( cos `  -u A
) )
2726gt0ne0d 9337 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( cos `  -u A )  =/=  0
)
286, 27retancld 12425 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( tan `  -u A )  e.  RR )
29 tangtx 19873 . . . . . 6  |-  ( -u A  e.  ( 0 (,) ( pi  / 
2 ) )  ->  -u A  <  ( tan `  -u A ) )
3023, 29syl 15 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  -u A  < 
( tan `  -u A
) )
316, 28, 30ltled 8967 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  -u A  <_ 
( tan `  -u A
) )
32 ltle 8910 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A  <  0  ->  A  <_  0 ) )
331, 2, 32sylancl 643 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( A  <  0  ->  A  <_  0 ) )
3433imp 418 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  A  <_  0 )
355, 34absnidd 11896 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( abs `  A )  =  -u A )
361recnd 8861 . . . . . . . . . 10  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  e.  CC )
3736adantr 451 . . . . . . . . 9  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  A  e.  CC )
3837negnegd 9148 . . . . . . . 8  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  -u -u A  =  A )
3938fveq2d 5529 . . . . . . 7  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( tan `  -u -u A )  =  ( tan `  A
) )
4037negcld 9144 . . . . . . . 8  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  -u A  e.  CC )
41 tanneg 12428 . . . . . . . 8  |-  ( (
-u A  e.  CC  /\  ( cos `  -u A
)  =/=  0 )  ->  ( tan `  -u -u A
)  =  -u ( tan `  -u A ) )
4240, 27, 41syl2anc 642 . . . . . . 7  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( tan `  -u -u A )  = 
-u ( tan `  -u A
) )
4339, 42eqtr3d 2317 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( tan `  A )  =  -u ( tan `  -u A
) )
4443fveq2d 5529 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( abs `  ( tan `  A
) )  =  ( abs `  -u ( tan `  -u A ) ) )
4528recnd 8861 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( tan `  -u A )  e.  CC )
4645absnegd 11931 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( abs `  -u ( tan `  -u A
) )  =  ( abs `  ( tan `  -u A ) ) )
472a1i 10 . . . . . . 7  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  0  e.  RR )
48 ltle 8910 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  -u A  e.  RR )  ->  ( 0  <  -u A  ->  0  <_  -u A ) )
492, 6, 48sylancr 644 . . . . . . . 8  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( 0  <  -u A  ->  0  <_ 
-u A ) )
508, 49mpd 14 . . . . . . 7  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  0  <_  -u A )
5147, 6, 28, 50, 31letrd 8973 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  0  <_  ( tan `  -u A
) )
5228, 51absidd 11905 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( abs `  ( tan `  -u A
) )  =  ( tan `  -u A
) )
5344, 46, 523eqtrd 2319 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( abs `  ( tan `  A
) )  =  ( tan `  -u A
) )
5431, 35, 533brtr4d 4053 . . 3  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  <  0
)  ->  ( abs `  A )  <_  ( abs `  ( tan `  A
) ) )
55 abs0 11770 . . . . . . 7  |-  ( abs `  0 )  =  0
5655, 2eqeltri 2353 . . . . . 6  |-  ( abs `  0 )  e.  RR
5756leidi 9307 . . . . 5  |-  ( abs `  0 )  <_ 
( abs `  0
)
5857a1i 10 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  =  0 )  ->  ( abs `  0 )  <_  ( abs `  0 ) )
59 simpr 447 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  =  0 )  ->  A  = 
0 )
6059fveq2d 5529 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  =  0 )  ->  ( abs `  A )  =  ( abs `  0 ) )
6159fveq2d 5529 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  =  0 )  ->  ( tan `  A )  =  ( tan `  0 ) )
62 tan0 12431 . . . . . 6  |-  ( tan `  0 )  =  0
6361, 62syl6eq 2331 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  =  0 )  ->  ( tan `  A )  =  0 )
6463fveq2d 5529 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  =  0 )  ->  ( abs `  ( tan `  A
) )  =  ( abs `  0 ) )
6558, 60, 643brtr4d 4053 . . 3  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  A  =  0 )  ->  ( abs `  A )  <_  ( abs `  ( tan `  A
) ) )
661adantr 451 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  A  e.  RR )
67 simpr 447 . . . . . . . . . 10  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  0  <  A )
689simprd 449 . . . . . . . . . . 11  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  <  ( pi  / 
2 ) )
6968adantr 451 . . . . . . . . . 10  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  A  <  ( pi  /  2 ) )
70 elioo2 10697 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  ( A  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  ( pi  /  2 ) ) ) )
7118, 20, 70mp2an 653 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  ( pi  /  2 ) ) )
7266, 67, 69, 71syl3anbrc 1136 . . . . . . . . 9  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  A  e.  ( 0 (,) (
pi  /  2 ) ) )
73 sincosq1sgn 19866 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  A )  /\  0  <  ( cos `  A
) ) )
7472, 73syl 15 . . . . . . . 8  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  ( 0  <  ( sin `  A
)  /\  0  <  ( cos `  A ) ) )
7574simprd 449 . . . . . . 7  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  0  <  ( cos `  A ) )
7675gt0ne0d 9337 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  ( cos `  A )  =/=  0
)
7766, 76retancld 12425 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  ( tan `  A )  e.  RR )
78 tangtx 19873 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( tan `  A
) )
7972, 78syl 15 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  A  <  ( tan `  A ) )
8066, 77, 79ltled 8967 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  A  <_  ( tan `  A ) )
81 ltle 8910 . . . . . . 7  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
822, 1, 81sylancr 644 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( 0  <  A  ->  0  <_  A )
)
8382imp 418 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  0  <_  A )
8466, 83absidd 11905 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  ( abs `  A )  =  A )
852a1i 10 . . . . . 6  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  0  e.  RR )
8685, 66, 77, 83, 80letrd 8973 . . . . 5  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  0  <_  ( tan `  A ) )
8777, 86absidd 11905 . . . 4  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  ( abs `  ( tan `  A
) )  =  ( tan `  A ) )
8880, 84, 873brtr4d 4053 . . 3  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  0  <  A
)  ->  ( abs `  A )  <_  ( abs `  ( tan `  A
) ) )
8954, 65, 883jaodan 1248 . 2  |-  ( ( A  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  ( A  <  0  \/  A  =  0  \/  0  < 
A ) )  -> 
( abs `  A
)  <_  ( abs `  ( tan `  A
) ) )
904, 89mpdan 649 1  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( abs `  A
)  <_  ( abs `  ( tan `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   RR*cxr 8866    < clt 8867    <_ cle 8868   -ucneg 9038    / cdiv 9423   2c2 9795   (,)cioo 10656   abscabs 11719   sincsin 12345   cosccos 12346   tanctan 12347   picpi 12348
This theorem is referenced by:  logcnlem4  19992
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-tan 12353  df-pi 12354  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator