MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanatan Structured version   Unicode version

Theorem tanatan 20761
Description: The arctangent function is an inverse to  tan. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
tanatan  |-  ( A  e.  dom arctan  ->  ( tan `  (arctan `  A )
)  =  A )

Proof of Theorem tanatan
StepHypRef Expression
1 atancl 20723 . . 3  |-  ( A  e.  dom arctan  ->  (arctan `  A )  e.  CC )
2 2efiatan 20760 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  1 ) )
32oveq1d 6098 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  +  1 )  =  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  1 )  +  1 ) )
4 2cn 10072 . . . . . . . . 9  |-  2  e.  CC
5 ax-icn 9051 . . . . . . . . 9  |-  _i  e.  CC
64, 5mulcli 9097 . . . . . . . 8  |-  ( 2  x.  _i )  e.  CC
76a1i 11 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 2  x.  _i )  e.  CC )
8 atandm 20718 . . . . . . . . 9  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )
98simp1bi 973 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  A  e.  CC )
10 addcl 9074 . . . . . . . 8  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( A  +  _i )  e.  CC )
119, 5, 10sylancl 645 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( A  +  _i )  e.  CC )
12 subneg 9352 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( A  -  -u _i )  =  ( A  +  _i ) )
139, 5, 12sylancl 645 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( A  -  -u _i )  =  ( A  +  _i ) )
148simp2bi 974 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  A  =/=  -u _i )
155negcli 9370 . . . . . . . . . 10  |-  -u _i  e.  CC
16 subeq0 9329 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u _i  e.  CC )  ->  ( ( A  -  -u _i )  =  0  <->  A  =  -u _i ) )
1716necon3bid 2638 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u _i  e.  CC )  ->  ( ( A  -  -u _i )  =/=  0  <->  A  =/=  -u _i ) )
189, 15, 17sylancl 645 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( ( A  -  -u _i )  =/=  0  <->  A  =/=  -u _i ) )
1914, 18mpbird 225 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( A  -  -u _i )  =/=  0 )
2013, 19eqnetrrd 2623 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( A  +  _i )  =/=  0 )
217, 11, 20divcld 9792 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  /  ( A  +  _i ) )  e.  CC )
22 ax-1cn 9050 . . . . . 6  |-  1  e.  CC
23 npcan 9316 . . . . . 6  |-  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  1 )  +  1 )  =  ( ( 2  x.  _i )  / 
( A  +  _i ) ) )
2421, 22, 23sylancl 645 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  1 )  +  1 )  =  ( ( 2  x.  _i )  /  ( A  +  _i )
) )
253, 24eqtrd 2470 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  +  1 )  =  ( ( 2  x.  _i )  /  ( A  +  _i ) ) )
26 2ne0 10085 . . . . . . 7  |-  2  =/=  0
27 ine0 9471 . . . . . . 7  |-  _i  =/=  0
284, 5, 26, 27mulne0i 9667 . . . . . 6  |-  ( 2  x.  _i )  =/=  0
2928a1i 11 . . . . 5  |-  ( A  e.  dom arctan  ->  ( 2  x.  _i )  =/=  0 )
307, 11, 29, 20divne0d 9808 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  /  ( A  +  _i ) )  =/=  0
)
3125, 30eqnetrd 2621 . . 3  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  +  1 )  =/=  0 )
32 tanval3 12737 . . 3  |-  ( ( (arctan `  A )  e.  CC  /\  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  +  1 )  =/=  0 )  ->  ( tan `  (arctan `  A ) )  =  ( ( ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  -  1 )  / 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  +  1 ) ) ) )
331, 31, 32syl2anc 644 . 2  |-  ( A  e.  dom arctan  ->  ( tan `  (arctan `  A )
)  =  ( ( ( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  -  1 )  / 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  +  1 ) ) ) )
342oveq1d 6098 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  -  1 )  =  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  1 )  -  1 ) )
3522a1i 11 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  1  e.  CC )
3621, 35, 35subsub4d 9444 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  1 )  -  1 )  =  ( ( ( 2  x.  _i )  / 
( A  +  _i ) )  -  (
1  +  1 ) ) )
37 df-2 10060 . . . . . . . 8  |-  2  =  ( 1  +  1 )
3837oveq2i 6094 . . . . . . 7  |-  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  2 )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  (
1  +  1 ) )
3936, 38syl6eqr 2488 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  1 )  -  1 )  =  ( ( ( 2  x.  _i )  / 
( A  +  _i ) )  -  2 ) )
4034, 39eqtrd 2470 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  -  1 )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  2 ) )
41 mulcl 9076 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( A  +  _i )  e.  CC )  ->  ( 2  x.  ( A  +  _i )
)  e.  CC )
424, 11, 41sylancr 646 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( A  +  _i ) )  e.  CC )
437, 42, 11, 20divsubdird 9831 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  -  ( 2  x.  ( A  +  _i ) ) )  / 
( A  +  _i ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  ( ( 2  x.  ( A  +  _i ) )  /  ( A  +  _i ) ) ) )
44 mulneg12 9474 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( -u 2  x.  A )  =  ( 2  x.  -u A
) )
454, 9, 44sylancr 646 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( -u
2  x.  A )  =  ( 2  x.  -u A ) )
46 negsub 9351 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  +  -u A )  =  ( _i  -  A ) )
475, 9, 46sylancr 646 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( _i  +  -u A )  =  ( _i  -  A
) )
4847oveq1d 6098 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( ( _i  +  -u A
)  -  _i )  =  ( ( _i 
-  A )  -  _i ) )
499negcld 9400 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  -u A  e.  CC )
50 pncan2 9314 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  -u A  e.  CC )  ->  ( ( _i  +  -u A )  -  _i )  =  -u A
)
515, 49, 50sylancr 646 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( ( _i  +  -u A
)  -  _i )  =  -u A )
525a1i 11 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  _i  e.  CC )
5352, 9, 52subsub4d 9444 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( ( _i  -  A )  -  _i )  =  ( _i  -  ( A  +  _i )
) )
5448, 51, 533eqtr3rd 2479 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( _i 
-  ( A  +  _i ) )  =  -u A )
5554oveq2d 6099 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( _i  -  ( A  +  _i ) ) )  =  ( 2  x.  -u A
) )
564a1i 11 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  2  e.  CC )
5756, 52, 11subdid 9491 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( _i  -  ( A  +  _i ) ) )  =  ( ( 2  x.  _i )  -  (
2  x.  ( A  +  _i ) ) ) )
5845, 55, 573eqtr2rd 2477 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  -  ( 2  x.  ( A  +  _i ) ) )  =  ( -u 2  x.  A ) )
5958oveq1d 6098 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  -  ( 2  x.  ( A  +  _i ) ) )  / 
( A  +  _i ) )  =  ( ( -u 2  x.  A )  /  ( A  +  _i )
) )
6056, 11, 20divcan4d 9798 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( A  +  _i ) )  /  ( A  +  _i ) )  =  2 )
6160oveq2d 6099 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  (
( 2  x.  ( A  +  _i )
)  /  ( A  +  _i ) ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  2 ) )
6243, 59, 613eqtr3d 2478 . . . . 5  |-  ( A  e.  dom arctan  ->  ( (
-u 2  x.  A
)  /  ( A  +  _i ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  2 ) )
6340, 62eqtr4d 2473 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  -  1 )  =  ( (
-u 2  x.  A
)  /  ( A  +  _i ) ) )
6425oveq2d 6099 . . . . 5  |-  ( A  e.  dom arctan  ->  ( _i  x.  ( ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  +  1 ) )  =  ( _i  x.  ( ( 2  x.  _i )  /  ( A  +  _i )
) ) )
655, 4, 5mul12i 9263 . . . . . . . 8  |-  ( _i  x.  ( 2  x.  _i ) )  =  ( 2  x.  (
_i  x.  _i )
)
66 ixi 9653 . . . . . . . . 9  |-  ( _i  x.  _i )  = 
-u 1
6766oveq2i 6094 . . . . . . . 8  |-  ( 2  x.  ( _i  x.  _i ) )  =  ( 2  x.  -u 1
)
6822negcli 9370 . . . . . . . . 9  |-  -u 1  e.  CC
694mulm1i 9480 . . . . . . . . 9  |-  ( -u
1  x.  2 )  =  -u 2
7068, 4, 69mulcomli 9099 . . . . . . . 8  |-  ( 2  x.  -u 1 )  = 
-u 2
7165, 67, 703eqtri 2462 . . . . . . 7  |-  ( _i  x.  ( 2  x.  _i ) )  = 
-u 2
7271oveq1i 6093 . . . . . 6  |-  ( ( _i  x.  ( 2  x.  _i ) )  /  ( A  +  _i ) )  =  (
-u 2  /  ( A  +  _i )
)
7352, 7, 11, 20divassd 9827 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  ( 2  x.  _i ) )  /  ( A  +  _i ) )  =  ( _i  x.  ( ( 2  x.  _i )  /  ( A  +  _i ) ) ) )
7472, 73syl5eqr 2484 . . . . 5  |-  ( A  e.  dom arctan  ->  ( -u
2  /  ( A  +  _i ) )  =  ( _i  x.  ( ( 2  x.  _i )  /  ( A  +  _i )
) ) )
7564, 74eqtr4d 2473 . . . 4  |-  ( A  e.  dom arctan  ->  ( _i  x.  ( ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  +  1 ) )  =  ( -u 2  /  ( A  +  _i ) ) )
7663, 75oveq12d 6101 . . 3  |-  ( A  e.  dom arctan  ->  ( ( ( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  -  1 )  / 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  +  1 ) ) )  =  ( ( ( -u 2  x.  A )  /  ( A  +  _i )
)  /  ( -u
2  /  ( A  +  _i ) ) ) )
774negcli 9370 . . . . . 6  |-  -u 2  e.  CC
78 mulcl 9076 . . . . . 6  |-  ( (
-u 2  e.  CC  /\  A  e.  CC )  ->  ( -u 2  x.  A )  e.  CC )
7977, 9, 78sylancr 646 . . . . 5  |-  ( A  e.  dom arctan  ->  ( -u
2  x.  A )  e.  CC )
8077a1i 11 . . . . 5  |-  ( A  e.  dom arctan  ->  -u 2  e.  CC )
814, 26negne0i 9377 . . . . . 6  |-  -u 2  =/=  0
8281a1i 11 . . . . 5  |-  ( A  e.  dom arctan  ->  -u 2  =/=  0 )
8379, 80, 11, 82, 20divcan7d 9820 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( ( -u 2  x.  A )  /  ( A  +  _i )
)  /  ( -u
2  /  ( A  +  _i ) ) )  =  ( (
-u 2  x.  A
)  /  -u 2
) )
849, 80, 82divcan3d 9797 . . . 4  |-  ( A  e.  dom arctan  ->  ( (
-u 2  x.  A
)  /  -u 2
)  =  A )
8583, 84eqtrd 2470 . . 3  |-  ( A  e.  dom arctan  ->  ( ( ( -u 2  x.  A )  /  ( A  +  _i )
)  /  ( -u
2  /  ( A  +  _i ) ) )  =  A )
8676, 85eqtrd 2470 . 2  |-  ( A  e.  dom arctan  ->  ( ( ( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  -  1 )  / 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  +  1 ) ) )  =  A )
8733, 86eqtrd 2470 1  |-  ( A  e.  dom arctan  ->  ( tan `  (arctan `  A )
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   dom cdm 4880   ` cfv 5456  (class class class)co 6083   CCcc 8990   0cc0 8992   1c1 8993   _ici 8994    + caddc 8995    x. cmul 8997    - cmin 9293   -ucneg 9294    / cdiv 9679   2c2 10051   expce 12666   tanctan 12670  arctancatan 20706
This theorem is referenced by:  atantanb  20766  atanord  20769
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ioc 10923  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-sum 12482  df-ef 12672  df-sin 12674  df-cos 12675  df-tan 12676  df-pi 12677  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-limc 19755  df-dv 19756  df-log 20456  df-atan 20709
  Copyright terms: Public domain W3C validator