MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord1 Unicode version

Theorem tanord1 19915
Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 19916.) (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
tanord1  |-  ( ( A  e.  ( 0 [,) ( pi  / 
2 ) )  /\  B  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( A  < 
B  <->  ( tan `  A
)  <  ( tan `  B ) ) )

Proof of Theorem tanord1
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1312 . 2  |-  T.
2 fveq2 5541 . . 3  |-  ( x  =  y  ->  ( tan `  x )  =  ( tan `  y
) )
3 fveq2 5541 . . 3  |-  ( x  =  A  ->  ( tan `  x )  =  ( tan `  A
) )
4 fveq2 5541 . . 3  |-  ( x  =  B  ->  ( tan `  x )  =  ( tan `  B
) )
5 0re 8854 . . . 4  |-  0  e.  RR
6 pire 19848 . . . . . 6  |-  pi  e.  RR
7 rehalfcl 9954 . . . . . 6  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
86, 7ax-mp 8 . . . . 5  |-  ( pi 
/  2 )  e.  RR
9 rexr 8893 . . . . 5  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
108, 9ax-mp 8 . . . 4  |-  ( pi 
/  2 )  e. 
RR*
11 icossre 10746 . . . 4  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR* )  ->  ( 0 [,) (
pi  /  2 ) )  C_  RR )
125, 10, 11mp2an 653 . . 3  |-  ( 0 [,) ( pi  / 
2 ) )  C_  RR
1312sseli 3189 . . . . 5  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  RR )
14 ressxr 8892 . . . . . . . . . 10  |-  RR  C_  RR*
158renegcli 9124 . . . . . . . . . 10  |-  -u (
pi  /  2 )  e.  RR
1614, 15sselii 3190 . . . . . . . . 9  |-  -u (
pi  /  2 )  e.  RR*
17 2re 9831 . . . . . . . . . . 11  |-  2  e.  RR
18 pipos 19849 . . . . . . . . . . 11  |-  0  <  pi
19 2pos 9844 . . . . . . . . . . 11  |-  0  <  2
206, 17, 18, 19divgt0ii 9690 . . . . . . . . . 10  |-  0  <  ( pi  /  2
)
21 lt0neg2 9297 . . . . . . . . . . 11  |-  ( ( pi  /  2 )  e.  RR  ->  (
0  <  ( pi  /  2 )  <->  -u ( pi 
/  2 )  <  0 ) )
228, 21ax-mp 8 . . . . . . . . . 10  |-  ( 0  <  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <  0 )
2320, 22mpbi 199 . . . . . . . . 9  |-  -u (
pi  /  2 )  <  0
24 df-ioo 10676 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
25 df-ico 10678 . . . . . . . . . 10  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
26 xrltletr 10504 . . . . . . . . . 10  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  0  e.  RR*  /\  w  e.  RR* )  ->  (
( -u ( pi  / 
2 )  <  0  /\  0  <_  w )  ->  -u ( pi  / 
2 )  <  w
) )
2724, 25, 26ixxss1 10690 . . . . . . . . 9  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  -u ( pi  /  2
)  <  0 )  ->  ( 0 [,) ( pi  /  2
) )  C_  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
2816, 23, 27mp2an 653 . . . . . . . 8  |-  ( 0 [,) ( pi  / 
2 ) )  C_  ( -u ( pi  / 
2 ) (,) (
pi  /  2 ) )
2928sseli 3189 . . . . . . 7  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
30 cosq14gt0 19894 . . . . . . 7  |-  ( x  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  x ) )
3129, 30syl 15 . . . . . 6  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  0  <  ( cos `  x
) )
3231gt0ne0d 9353 . . . . 5  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( cos `  x )  =/=  0 )
3313, 32retancld 12441 . . . 4  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( tan `  x )  e.  RR )
3433adantl 452 . . 3  |-  ( (  T.  /\  x  e.  ( 0 [,) (
pi  /  2 ) ) )  ->  ( tan `  x )  e.  RR )
3513resincld 12439 . . . . . . . . 9  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( sin `  x )  e.  RR )
3613recoscld 12440 . . . . . . . . 9  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( cos `  x )  e.  RR )
3735, 36, 32redivcld 9604 . . . . . . . 8  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  (
( sin `  x
)  /  ( cos `  x ) )  e.  RR )
38373ad2ant1 976 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  /  ( cos `  x ) )  e.  RR )
3912sseli 3189 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  RR )
40393ad2ant2 977 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  RR )
4140resincld 12439 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( sin `  y
)  e.  RR )
42363ad2ant1 976 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  x
)  e.  RR )
43323ad2ant1 976 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  x
)  =/=  0 )
4441, 42, 43redivcld 9604 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  y
)  /  ( cos `  x ) )  e.  RR )
4540recoscld 12440 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  y
)  e.  RR )
4628sseli 3189 . . . . . . . . . . 11  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
47 cosq14gt0 19894 . . . . . . . . . . 11  |-  ( y  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  y ) )
4846, 47syl 15 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  0  <  ( cos `  y
) )
4948gt0ne0d 9353 . . . . . . . . 9  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  ( cos `  y )  =/=  0 )
50493ad2ant2 977 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  y
)  =/=  0 )
5141, 45, 50redivcld 9604 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  y
)  /  ( cos `  y ) )  e.  RR )
52 ioossicc 10751 . . . . . . . . . . . 12  |-  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) 
C_  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )
5328, 52sstri 3201 . . . . . . . . . . 11  |-  ( 0 [,) ( pi  / 
2 ) )  C_  ( -u ( pi  / 
2 ) [,] (
pi  /  2 ) )
5453sseli 3189 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )
5553sseli 3189 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )
56 sinord 19912 . . . . . . . . . 10  |-  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) )  /\  y  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) ) )  ->  (
x  <  y  <->  ( sin `  x )  <  ( sin `  y ) ) )
5754, 55, 56syl2an 463 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( x  < 
y  <->  ( sin `  x
)  <  ( sin `  y ) ) )
5857biimp3a 1281 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( sin `  x
)  <  ( sin `  y ) )
59133ad2ant1 976 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  ->  x  e.  RR )
6059resincld 12439 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( sin `  x
)  e.  RR )
61313ad2ant1 976 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  ( cos `  x ) )
62 ltdiv1 9636 . . . . . . . . 9  |-  ( ( ( sin `  x
)  e.  RR  /\  ( sin `  y )  e.  RR  /\  (
( cos `  x
)  e.  RR  /\  0  <  ( cos `  x
) ) )  -> 
( ( sin `  x
)  <  ( sin `  y )  <->  ( ( sin `  x )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  x ) ) ) )
6360, 41, 42, 61, 62syl112anc 1186 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  <  ( sin `  y )  <->  ( ( sin `  x )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  x ) ) ) )
6458, 63mpbid 201 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  /  ( cos `  x ) )  < 
( ( sin `  y
)  /  ( cos `  x ) ) )
65 rexr 8893 . . . . . . . . . . . . 13  |-  ( pi  e.  RR  ->  pi  e.  RR* )
666, 65ax-mp 8 . . . . . . . . . . . 12  |-  pi  e.  RR*
676, 18elrpii 10373 . . . . . . . . . . . . 13  |-  pi  e.  RR+
68 rphalflt 10396 . . . . . . . . . . . . 13  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
6967, 68ax-mp 8 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  < 
pi
70 df-icc 10679 . . . . . . . . . . . . 13  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
71 xrlttr 10490 . . . . . . . . . . . . . 14  |-  ( ( w  e.  RR*  /\  (
pi  /  2 )  e.  RR*  /\  pi  e.  RR* )  ->  (
( w  <  (
pi  /  2 )  /\  ( pi  / 
2 )  <  pi )  ->  w  <  pi ) )
72 xrltle 10499 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  RR*  /\  pi  e.  RR* )  ->  (
w  <  pi  ->  w  <_  pi ) )
73723adant2 974 . . . . . . . . . . . . . 14  |-  ( ( w  e.  RR*  /\  (
pi  /  2 )  e.  RR*  /\  pi  e.  RR* )  ->  (
w  <  pi  ->  w  <_  pi ) )
7471, 73syld 40 . . . . . . . . . . . . 13  |-  ( ( w  e.  RR*  /\  (
pi  /  2 )  e.  RR*  /\  pi  e.  RR* )  ->  (
( w  <  (
pi  /  2 )  /\  ( pi  / 
2 )  <  pi )  ->  w  <_  pi ) )
7570, 25, 74ixxss2 10691 . . . . . . . . . . . 12  |-  ( ( pi  e.  RR*  /\  (
pi  /  2 )  <  pi )  -> 
( 0 [,) (
pi  /  2 ) )  C_  ( 0 [,] pi ) )
7666, 69, 75mp2an 653 . . . . . . . . . . 11  |-  ( 0 [,) ( pi  / 
2 ) )  C_  ( 0 [,] pi )
7776sseli 3189 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  ( 0 [,] pi ) )
7876sseli 3189 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  ( 0 [,] pi ) )
79 cosord 19910 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( x  < 
y  <->  ( cos `  y
)  <  ( cos `  x ) ) )
8077, 78, 79syl2an 463 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( x  < 
y  <->  ( cos `  y
)  <  ( cos `  x ) ) )
8180biimp3a 1281 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  y
)  <  ( cos `  x ) )
825a1i 10 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  e.  RR )
83 simp1 955 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  ->  x  e.  ( 0 [,) ( pi  / 
2 ) ) )
84 elico2 10730 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR* )  ->  ( x  e.  ( 0 [,) ( pi 
/  2 ) )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <  ( pi  / 
2 ) ) ) )
855, 10, 84mp2an 653 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <  (
pi  /  2 ) ) )
8683, 85sylib 188 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( x  e.  RR  /\  0  <_  x  /\  x  <  ( pi  / 
2 ) ) )
8786simp2d 968 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <_  x )
88 simp3 957 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  ->  x  <  y )
8982, 59, 40, 87, 88lelttrd 8990 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  y )
90 simp2 956 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  ( 0 [,) ( pi  / 
2 ) ) )
91 elico2 10730 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR* )  ->  ( y  e.  ( 0 [,) ( pi 
/  2 ) )  <-> 
( y  e.  RR  /\  0  <_  y  /\  y  <  ( pi  / 
2 ) ) ) )
925, 10, 91mp2an 653 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  <->  ( y  e.  RR  /\  0  <_ 
y  /\  y  <  ( pi  /  2 ) ) )
9390, 92sylib 188 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( y  e.  RR  /\  0  <_  y  /\  y  <  ( pi  / 
2 ) ) )
9493simp3d 969 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  <  ( pi  /  2 ) )
95 0xr 8894 . . . . . . . . . . . . 13  |-  0  e.  RR*
96 elioo2 10713 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
y  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( y  e.  RR  /\  0  < 
y  /\  y  <  ( pi  /  2 ) ) ) )
9795, 10, 96mp2an 653 . . . . . . . . . . . 12  |-  ( y  e.  ( 0 (,) ( pi  /  2
) )  <->  ( y  e.  RR  /\  0  < 
y  /\  y  <  ( pi  /  2 ) ) )
9840, 89, 94, 97syl3anbrc 1136 . . . . . . . . . . 11  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  ( 0 (,) ( pi  / 
2 ) ) )
99 sincosq1sgn 19882 . . . . . . . . . . 11  |-  ( y  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  y )  /\  0  <  ( cos `  y
) ) )
10098, 99syl 15 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( 0  <  ( sin `  y )  /\  0  <  ( cos `  y
) ) )
101100simprd 449 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  ( cos `  y ) )
102100simpld 445 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  ( sin `  y ) )
103 ltdiv2OLD 9658 . . . . . . . . 9  |-  ( ( ( ( cos `  y
)  e.  RR  /\  ( cos `  x )  e.  RR  /\  ( sin `  y )  e.  RR )  /\  (
0  <  ( cos `  y )  /\  0  <  ( cos `  x
)  /\  0  <  ( sin `  y ) ) )  ->  (
( cos `  y
)  <  ( cos `  x )  <->  ( ( sin `  y )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  y ) ) ) )
10445, 42, 41, 101, 61, 102, 103syl33anc 1197 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( cos `  y
)  <  ( cos `  x )  <->  ( ( sin `  y )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  y ) ) ) )
10581, 104mpbid 201 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  y
)  /  ( cos `  x ) )  < 
( ( sin `  y
)  /  ( cos `  y ) ) )
10638, 44, 51, 64, 105lttrd 8993 . . . . . 6  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  /  ( cos `  x ) )  < 
( ( sin `  y
)  /  ( cos `  y ) ) )
10713recnd 8877 . . . . . . . 8  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  CC )
108 tanval 12424 . . . . . . . 8  |-  ( ( x  e.  CC  /\  ( cos `  x )  =/=  0 )  -> 
( tan `  x
)  =  ( ( sin `  x )  /  ( cos `  x
) ) )
109107, 32, 108syl2anc 642 . . . . . . 7  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( tan `  x )  =  ( ( sin `  x
)  /  ( cos `  x ) ) )
1101093ad2ant1 976 . . . . . 6  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( tan `  x
)  =  ( ( sin `  x )  /  ( cos `  x
) ) )
11139recnd 8877 . . . . . . . 8  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  CC )
1121113ad2ant2 977 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  CC )
113 tanval 12424 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( cos `  y )  =/=  0 )  -> 
( tan `  y
)  =  ( ( sin `  y )  /  ( cos `  y
) ) )
114112, 50, 113syl2anc 642 . . . . . 6  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( tan `  y
)  =  ( ( sin `  y )  /  ( cos `  y
) ) )
115106, 110, 1143brtr4d 4069 . . . . 5  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( tan `  x
)  <  ( tan `  y ) )
1161153expia 1153 . . . 4  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( x  < 
y  ->  ( tan `  x )  <  ( tan `  y ) ) )
117116adantl 452 . . 3  |-  ( (  T.  /\  ( x  e.  ( 0 [,) ( pi  /  2
) )  /\  y  e.  ( 0 [,) (
pi  /  2 ) ) ) )  -> 
( x  <  y  ->  ( tan `  x
)  <  ( tan `  y ) ) )
1182, 3, 4, 12, 34, 117ltord1 9315 . 2  |-  ( (  T.  /\  ( A  e.  ( 0 [,) ( pi  /  2
) )  /\  B  e.  ( 0 [,) (
pi  /  2 ) ) ) )  -> 
( A  <  B  <->  ( tan `  A )  <  ( tan `  B
) ) )
1191, 118mpan 651 1  |-  ( ( A  e.  ( 0 [,) ( pi  / 
2 ) )  /\  B  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( A  < 
B  <->  ( tan `  A
)  <  ( tan `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    T. wtru 1307    = wceq 1632    e. wcel 1696    =/= wne 2459    C_ wss 3165   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   RR*cxr 8882    < clt 8883    <_ cle 8884   -ucneg 9054    / cdiv 9439   2c2 9811   RR+crp 10370   (,)cioo 10672   [,)cico 10674   [,]cicc 10675   sincsin 12361   cosccos 12362   tanctan 12363   picpi 12364
This theorem is referenced by:  tanord  19916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-tan 12369  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator