MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanval Structured version   Unicode version

Theorem tanval 12722
Description: Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
tanval  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  =  ( ( sin `  A )  /  ( cos `  A
) ) )

Proof of Theorem tanval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  ->  A  e.  CC )
2 coscl 12721 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
32anim1i 552 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( ( cos `  A
)  e.  CC  /\  ( cos `  A )  =/=  0 ) )
4 eldifsn 3920 . . . 4  |-  ( ( cos `  A )  e.  ( CC  \  { 0 } )  <-> 
( ( cos `  A
)  e.  CC  /\  ( cos `  A )  =/=  0 ) )
53, 4sylibr 204 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( cos `  A
)  e.  ( CC 
\  { 0 } ) )
6 cosf 12719 . . . 4  |-  cos : CC
--> CC
7 ffn 5584 . . . 4  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
8 elpreima 5843 . . . 4  |-  ( cos 
Fn  CC  ->  ( A  e.  ( `' cos " ( CC  \  {
0 } ) )  <-> 
( A  e.  CC  /\  ( cos `  A
)  e.  ( CC 
\  { 0 } ) ) ) )
96, 7, 8mp2b 10 . . 3  |-  ( A  e.  ( `' cos " ( CC  \  {
0 } ) )  <-> 
( A  e.  CC  /\  ( cos `  A
)  e.  ( CC 
\  { 0 } ) ) )
101, 5, 9sylanbrc 646 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  ->  A  e.  ( `' cos " ( CC  \  { 0 } ) ) )
11 fveq2 5721 . . . 4  |-  ( x  =  A  ->  ( sin `  x )  =  ( sin `  A
) )
12 fveq2 5721 . . . 4  |-  ( x  =  A  ->  ( cos `  x )  =  ( cos `  A
) )
1311, 12oveq12d 6092 . . 3  |-  ( x  =  A  ->  (
( sin `  x
)  /  ( cos `  x ) )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
14 df-tan 12667 . . 3  |-  tan  =  ( x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( ( sin `  x )  /  ( cos `  x
) ) )
15 ovex 6099 . . 3  |-  ( ( sin `  A )  /  ( cos `  A
) )  e.  _V
1613, 14, 15fvmpt 5799 . 2  |-  ( A  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( tan `  A
)  =  ( ( sin `  A )  /  ( cos `  A
) ) )
1710, 16syl 16 1  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  =  ( ( sin `  A )  /  ( cos `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599    \ cdif 3310   {csn 3807   `'ccnv 4870   "cima 4874    Fn wfn 5442   -->wf 5443   ` cfv 5447  (class class class)co 6074   CCcc 8981   0cc0 8983    / cdiv 9670   sincsin 12659   cosccos 12660   tanctan 12661
This theorem is referenced by:  tancl  12723  tanval2  12727  retancl  12736  tanneg  12742  tan0  12745  retanhcl  12753  tanhlt1  12754  tanaddlem  12760  tanadd  12761  tanrpcl  20405  tangtx  20406  tan4thpi  20415  tanord1  20432  atandmtan  20753  atantan  20756  basellem3  20858  basellem8  20863  reccot  28439  rectan  28440  onetansqsecsq  28442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061  ax-addf 9062  ax-mulf 9063
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-oadd 6721  df-er 6898  df-pm 7014  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-sup 7439  df-oi 7472  df-card 7819  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-n0 10215  df-z 10276  df-uz 10482  df-rp 10606  df-ico 10915  df-fz 11037  df-fzo 11129  df-fl 11195  df-seq 11317  df-exp 11376  df-fac 11560  df-hash 11612  df-shft 11875  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-limsup 12258  df-clim 12275  df-rlim 12276  df-sum 12473  df-ef 12663  df-cos 12666  df-tan 12667
  Copyright terms: Public domain W3C validator