MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfvallem1 Unicode version

Theorem taylfvallem1 20142
Description: Lemma for taylfval 20144. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylfval.f  |-  ( ph  ->  F : A --> CC )
taylfval.a  |-  ( ph  ->  A  C_  S )
taylfval.n  |-  ( ph  ->  ( N  e.  NN0  \/  N  =  +oo )
)
taylfval.b  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  D n F ) `
 k ) )
Assertion
Ref Expression
taylfvallem1  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( ( ( S  D n F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( X  -  B
) ^ k ) )  e.  CC )
Distinct variable groups:    B, k    k, F    ph, k    k, N    S, k    k, X
Allowed substitution hint:    A( k)

Proof of Theorem taylfvallem1
StepHypRef Expression
1 taylfval.s . . . . . 6  |-  ( ph  ->  S  e.  { RR ,  CC } )
21ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  S  e.  { RR ,  CC } )
3 cnex 9006 . . . . . . . 8  |-  CC  e.  _V
43a1i 11 . . . . . . 7  |-  ( ph  ->  CC  e.  _V )
5 taylfval.f . . . . . . 7  |-  ( ph  ->  F : A --> CC )
6 taylfval.a . . . . . . 7  |-  ( ph  ->  A  C_  S )
7 elpm2r 6972 . . . . . . 7  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : A --> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
84, 1, 5, 6, 7syl22anc 1185 . . . . . 6  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
98ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  F  e.  ( CC  ^pm  S
) )
10 inss2 3507 . . . . . . 7  |-  ( ( 0 [,] N )  i^i  ZZ )  C_  ZZ
11 simpr 448 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )
1210, 11sseldi 3291 . . . . . 6  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  k  e.  ZZ )
13 inss1 3506 . . . . . . . . 9  |-  ( ( 0 [,] N )  i^i  ZZ )  C_  ( 0 [,] N
)
1413, 11sseldi 3291 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  k  e.  ( 0 [,] N
) )
15 0xr 9066 . . . . . . . . 9  |-  0  e.  RR*
16 taylfval.n . . . . . . . . . . 11  |-  ( ph  ->  ( N  e.  NN0  \/  N  =  +oo )
)
17 nn0re 10164 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  N  e.  RR )
1817rexrd 9069 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e. 
RR* )
19 id 20 . . . . . . . . . . . . 13  |-  ( N  =  +oo  ->  N  =  +oo )
20 pnfxr 10647 . . . . . . . . . . . . 13  |-  +oo  e.  RR*
2119, 20syl6eqel 2477 . . . . . . . . . . . 12  |-  ( N  =  +oo  ->  N  e.  RR* )
2218, 21jaoi 369 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  \/  N  =  +oo )  ->  N  e.  RR* )
2316, 22syl 16 . . . . . . . . . 10  |-  ( ph  ->  N  e.  RR* )
2423ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  N  e.  RR* )
25 elicc1 10894 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  N  e.  RR* )  ->  (
k  e.  ( 0 [,] N )  <->  ( k  e.  RR*  /\  0  <_ 
k  /\  k  <_  N ) ) )
2615, 24, 25sylancr 645 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
k  e.  ( 0 [,] N )  <->  ( k  e.  RR*  /\  0  <_ 
k  /\  k  <_  N ) ) )
2714, 26mpbid 202 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
k  e.  RR*  /\  0  <_  k  /\  k  <_  N ) )
2827simp2d 970 . . . . . 6  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  0  <_  k )
29 elnn0z 10228 . . . . . 6  |-  ( k  e.  NN0  <->  ( k  e.  ZZ  /\  0  <_ 
k ) )
3012, 28, 29sylanbrc 646 . . . . 5  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  k  e.  NN0 )
31 dvnf 19682 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  k  e.  NN0 )  ->  ( ( S  D n F ) `
 k ) : dom  ( ( S  D n F ) `
 k ) --> CC )
322, 9, 30, 31syl3anc 1184 . . . 4  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( S  D n F ) `  k
) : dom  (
( S  D n F ) `  k
) --> CC )
33 taylfval.b . . . . 5  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  D n F ) `
 k ) )
3433adantlr 696 . . . 4  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  D n F ) `
 k ) )
3532, 34ffvelrnd 5812 . . 3  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( S  D n F ) `  k
) `  B )  e.  CC )
36 faccl 11505 . . . . 5  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3730, 36syl 16 . . . 4  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  ( ! `  k )  e.  NN )
3837nncnd 9950 . . 3  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  ( ! `  k )  e.  CC )
3937nnne0d 9978 . . 3  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  ( ! `  k )  =/=  0 )
4035, 38, 39divcld 9724 . 2  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( ( S  D n F ) `
 k ) `  B )  /  ( ! `  k )
)  e.  CC )
41 simplr 732 . . . 4  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  X  e.  CC )
42 dvnbss 19683 . . . . . . . 8  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  k  e.  NN0 )  ->  dom  ( ( S  D n F ) `  k ) 
C_  dom  F )
432, 9, 30, 42syl3anc 1184 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  dom  ( ( S  D n F ) `  k
)  C_  dom  F )
445ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  F : A --> CC )
45 fdm 5537 . . . . . . . 8  |-  ( F : A --> CC  ->  dom 
F  =  A )
4644, 45syl 16 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  dom  F  =  A )
4743, 46sseqtrd 3329 . . . . . 6  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  dom  ( ( S  D n F ) `  k
)  C_  A )
48 recnprss 19660 . . . . . . . . 9  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
491, 48syl 16 . . . . . . . 8  |-  ( ph  ->  S  C_  CC )
506, 49sstrd 3303 . . . . . . 7  |-  ( ph  ->  A  C_  CC )
5150ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  A  C_  CC )
5247, 51sstrd 3303 . . . . 5  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  dom  ( ( S  D n F ) `  k
)  C_  CC )
5352, 34sseldd 3294 . . . 4  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  CC )
5441, 53subcld 9345 . . 3  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  ( X  -  B )  e.  CC )
5554, 30expcld 11452 . 2  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( X  -  B
) ^ k )  e.  CC )
5640, 55mulcld 9043 1  |-  ( ( ( ph  /\  X  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( ( ( S  D n F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( X  -  B
) ^ k ) )  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   _Vcvv 2901    i^i cin 3264    C_ wss 3265   {cpr 3760   class class class wbr 4155   dom cdm 4820   -->wf 5392   ` cfv 5396  (class class class)co 6022    ^pm cpm 6957   CCcc 8923   RRcr 8924   0cc0 8925    x. cmul 8930    +oocpnf 9052   RR*cxr 9054    <_ cle 9056    - cmin 9225    / cdiv 9611   NNcn 9934   NN0cn0 10155   ZZcz 10216   [,]cicc 10853   ^cexp 11311   !cfa 11495    D ncdvn 19620
This theorem is referenced by:  taylfvallem  20143  taylf  20146  taylplem2  20149  taylpfval  20150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-pm 6959  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-fi 7353  df-sup 7383  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-q 10509  df-rp 10547  df-xneg 10644  df-xadd 10645  df-xmul 10646  df-icc 10857  df-fz 10978  df-seq 11253  df-exp 11312  df-fac 11496  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-plusg 13471  df-mulr 13472  df-starv 13473  df-tset 13477  df-ple 13478  df-ds 13480  df-unif 13481  df-rest 13579  df-topn 13580  df-topgen 13596  df-xmet 16621  df-met 16622  df-bl 16623  df-mopn 16624  df-fbas 16625  df-fg 16626  df-cnfld 16629  df-top 16888  df-bases 16890  df-topon 16891  df-topsp 16892  df-cld 17008  df-ntr 17009  df-cls 17010  df-nei 17087  df-lp 17125  df-perf 17126  df-cnp 17216  df-haus 17303  df-fil 17801  df-fm 17893  df-flim 17894  df-flf 17895  df-xms 18261  df-ms 18262  df-limc 19622  df-dv 19623  df-dvn 19624
  Copyright terms: Public domain W3C validator