MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tbw-ax4 Unicode version

Theorem tbw-ax4 1458
Description: The fourth of four axioms in the Tarski-Bernays-Wajsberg system.

This axiom was added to the Tarski-Bernays axiom system ( see tb-ax1 24889, tb-ax2 24890, and tb-ax3 24891) by Wajsberg for completeness. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
tbw-ax4  |-  (  F. 
->  ph )

Proof of Theorem tbw-ax4
StepHypRef Expression
1 falim 1319 1  |-  (  F. 
->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    F. wfal 1308
This theorem is referenced by:  tbwlem2  1461  tbwlem4  1463  re1luk3  1467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-tru 1310  df-fal 1311
  Copyright terms: Public domain W3C validator